in

Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon

  • Agrawal AF, Stinchcombe JR (2009) How much do genetic covariances alter the rate of adaptation? Proc Biol Sci 276:1183–1191

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol S 44:367–388

    Article 

    Google Scholar 

  • Andersen O (2012) Hemoglobin polymorphisms in Atlantic cod—a review of 50 years of study. Mar Genom 8:59–65

    Article 

    Google Scholar 

  • Anttila K, Dhillon RS, Boulding EG, Farrell AP, Glebe BD, Elliott JA et al. (2013) Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level. J Exp Biol 216:1183–1190

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478

    Article 

    Google Scholar 

  • Bontrager M, Angert AL (2019) Gene flow improves fitness at a range edge under climate change. Evol Lett 3:55–68

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Bowen SJ, Washburn KW (1984) Genetics of heat tolerance in Japanese quail. Poult Sci 63:430–435

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article 

    Google Scholar 

  • Breau C, Cunjak RA, Bremset G (2007) Age-specific aggregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events. J Fish Biol 71:1179–1191

    Article 

    Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments ASReml-R reference manual. Queensland Department of Primary Industries and Fisheries, NSW Department of Primary Industries, Brisbane, Australia

    Google Scholar 

  • Catullo RA, Llewelyn J, Phillips BL, Moritz CC (2019) The potential for rapid evolution under anthropogenic climate change. Curr Biol 29:R996–R1007

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B 272:1415–1425

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheung WWL, Sarmiento JL, Dunne J, Frölicher TL, Lam VWY, Deng Palomares ML et al. (2012) Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat Clim Change 3:254–258

    Article 

    Google Scholar 

  • Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Debes PV, Fraser DJ, McBride MC, Hutchings JA (2013) Multigenerational hybridisation and its consequences for maternal effects in Atlantic salmon. Heredity 111:238–247

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Debes PV, Piavchenko N, Erkinaro J, Primmer CR (2020) Genetic growth potential, rather than phenotypic size, predicts migration phenotype in Atlantic salmon. Proc R Soc B 287:20200867

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Debes PV, Piavchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, Parre N et al. (2021) Polygenic and major-locus contributions to sexual maturation timing in Atlantic salmon. Mol Ecol https://doi.org/10.1111/mec.16062

  • Dwyer WP, Piper RG (1987) Atlantic salmon growth efficiency as affected by temperature. Prog Fish Cult 49:57–59

    Article 

    Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Elliott JM, Elliott JA (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol 77:1793–1817

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Falconer DS (1952) The problem of environment and selection. Am Nat 86:293–298

    Article 

    Google Scholar 

  • Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Gallaugher P, Farrell AP (1998) Hematocrit and blood oxygen-carrying capacity. In: Perry SF, Tufts BL (eds) Fish respiration. Academic Press, San Diego, California, p 185–227

    Google Scholar 

  • Gamperl AK, Ajiboye OO, Zanuzzo FS, Sandrelli RM, Peroni EDFC, Beemelmanns A (2020) The impacts of increasing temperature and moderate hypoxia on the production characteristics, cardiac morphology and haematology of Atlantic Salmon (Salmo salar). Aquaculture 519:734874

    Article 

    Google Scholar 

  • Glover KA, Otterå H, Olsen RE, Slinde E, Taranger GL, Skaala Ø (2009) A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 286:203–210

    Article 

    Google Scholar 

  • Glover KA, Solberg MF, Besnier F, Skaala O (2018) Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild. Sci Rep 8:13966

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E, Coulson MW et al. (2017) Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish Fish 18:890–927

    Article 

    Google Scholar 

  • Good C, Davidson J (2016) A review of factors influencing maturation of Atlantic salmon, Salmo salar, with focus on water recirculation aquaculture system environments. J World Aquacult Soc 47:605–632

    Article 

    Google Scholar 

  • Hartman KJ, Porto MA (2014) Thermal performance of three rainbow trout strains at above-optimal temperatures. Trans Am Fish Soc 143:1445–1454

    Article 

    Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310

    Google Scholar 

  • Henderson CR (1973) Sire evaluation and genetic trends. J Anim Sci 1973:10–41

    Article 

    Google Scholar 

  • Hill WG (2010) Understanding and using quantitative genetic variation. Philos Trans R Soc Lond B Biol Sci 365:73–85

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci 367:1665–1679

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Hutchings JA, Myers RA (1994) The evolution of alternative mating strategies in variable environments. Evol Ecol 8:256–268

    Article 

    Google Scholar 

  • IPCC (2014) Future climate changes, risk and impacts. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, pp 56–74

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Jonsson B, Forseth T, Jensen AJ, Naesje TF (2001) Thermal performance of juvenile Atlantic Salmon, Salmo salar L. Funct Ecol 15:701–711

    Article 

    Google Scholar 

  • Jonsson B, Jonsson N, Finstad AG (2013) Effects of temperature and food quality on age and size at maturity in ectotherms: an experimental test with Atlantic salmon. J Anim Ecol 82:201–210

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Jutfelt F, Norin T, Ern R, Overgaard J, Wang T, McKenzie DJ et al. (2018) Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J Exp Biol 221:jeb169615

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kellermann V, van Heerwaarden B, Sgro CM (2017) How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc R Soc B 284:20170447

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kelly M (2019) Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 374:20180176

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kingsolver JG, Buckley LB (2017) Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos Trans R Soc Lond B Biol Sci 372:20160147

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kingsolver JG, Heckman N, Zhang J, Carter PA, Knies JL, Stinchcombe JR et al. (2015) Genetic variation, simplicity, and evolutionary constraints for function-valued traits. Am Nat 185:E166–181

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kingsolver JG, Izem R, Ragland GJ (2004) Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves. Integr Comp Biol 44:450–460

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, O’Connell MF et al. (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshwat Fish 12:1–59

    Article 

    Google Scholar 

  • Komender P, Hoeschele I (1989) Use of mixed-model methodology to improve estimation of crossbreeding parameters. Livest Prod Sci 21:101–113

    Article 

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article 

    Google Scholar 

  • Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75:1561–1574

    Article 

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Mather K, Jinks JL (1982) Biometrical genetics: the study of continuous variation, 3rd edn. Chapman and Hall, London

    Book 

    Google Scholar 

  • McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR et al. (2021) Intraspecific variation in tolerance of warming in fishes. J Fish Biol 98:1536–1555

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Messmer V, Pratchett MS, Hoey AS, Tobin AJ, Coker DJ, Cooke SJ et al. (2017) Global warming may disproportionately affect larger adults in a predatory coral reef fish. Glob Change Biol 23:2230–2240

    Article 

    Google Scholar 

  • Morgan R, Finnoen MH, Jensen H, Pelabon C, Jutfelt F (2020) Low potential for evolutionary rescue from climate change in a tropical fish. Proc Natl Acad Sci USA 117:33365–33372

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morita K, Tamate T, Kuroki M, Nagasawa T (2014) Temperature-dependent variation in alternative migratory tactics and its implications for fitness and population dynamics in a salmonid fish. J Anim Ecol 83:1268–1278

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Moritz C, Langham G, Kearney M, Krockenberger A, VanDerWal J, Williams S (2012) Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philos Trans R Soc Lond B Biol Sci 367:1680–1687

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morrissey MB, Kruuk LE, Wilson AJ (2010) The danger of applying the breeder’s equation in observational studies of natural populations. J Evol Biol 23:2277–2288

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Morrissey MB, Liefting M (2016) Variation in reaction norms: statistical considerations and biological interpretation. Evolution 70:1944–1959

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Muff S, Niskanen AK, Saatoglu D, Keller LF, Jensen H (2019) Animal models with group-specific additive genetic variances: extending genetic group models. Genet Sel Evol 51:7

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Munday PL, Donelson JM, Domingos JA (2017) Potential for adaptation to climate change in a coral reef fish. Glob Change Biol 23:307–317

    Article 

    Google Scholar 

  • Muñoz NJ, Anttila K, Chen Z, Heath JW, Farrell AP, Neff BD (2014a) Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon. Proc R Soc B 281:20141082

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muñoz NJ, Farrell AP, Heath JW, Neff BD (2014b) Adaptive potential of a Pacific salmon challenged by climate change. Nat Clim Change 5:163–166

    Article 

    Google Scholar 

  • Muñoz NJ, Farrell AP, Heath JW, Neff BD (2018) Hematocrit is associated with thermal tolerance and modulated by developmental temperature in juvenile Chinook salmon. Physiol Biochem Zool 91:757–762

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Ørsted M, Hoffmann AA, Rohde PD, Sørensen P, Kristensen TN (2019) Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122:315–325

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Pörtner HO, Bock C, Mark FC (2017) Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 220:2685–2696

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15:469–485

    Article 

    Google Scholar 

  • Robinson ML, Gomez-Raya L, Rauw WM, Peacock MM (2008) Fulton’s body condition factor K correlates with survival time in a thermal challenge experiment in juvenile Lahontan cutthroat trout (Oncorhynchus clarki henshawi). J Therm Biol 33:363–368

    Article 

    Google Scholar 

  • Rowe DK, Thorpe JE, Shanks AM (1991) Role of fat stores in the maturation of male Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci 48:405–413

    Article 

    Google Scholar 

  • Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406

    Article 

    Google Scholar 

  • Siepielski AM, Morrissey MB, Carlson SM, Francis CD, Kingsolver JG, Whitney KD et al. (2019) No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc R Soc B 286:20191332

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S et al. (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Solberg MF, Dyrhovden L, Matre IH, Glover KA (2016) Thermal plasticity in farmed, wild and hybrid Atlantic salmon during early development: has domestication caused divergence in low temperature tolerance? BMC Evol Biol 16:38

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Solberg MF, Fjelldal PG, Nilsen F, Glover KA (2014) Hatching time and alevin growth prior to the onset of exogenous feeding in farmed, wild and hybrid Norwegian Atlantic salmon. PLoS ONE 9:e113697

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stillman JH (2019) Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34:86–100

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Sutton SG, Bult TP, Haedrich RL (2000) Relationships among fat weight, body weight, water weight, and condition factors in wild Atlantic salmon parr. Trans Am Fish Soc 129:527–538

    Article 

    Google Scholar 

  • Taggart JB (2006) FAP: an exclusion-based parental assignment program with enhanced predictive functions. Mol Ecol Notes 7:412–415

    Article 
    CAS 

    Google Scholar 

  • Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A et al. (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16:799–806

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquacult Res 25:77–87

    Article 

    Google Scholar 

  • Tromp JJ, Jones PL, Brown MS, Donald JA, Biro PA, Afonso LOB (2018) Chronic exposure to increased water temperature reveals few impacts on stress physiology and growth responses in juvenile Atlantic salmon. Aquaculture 495:196–204

    Article 

    Google Scholar 

  • Underwood ZE, Myrick CA, Rogers KB (2012) Effect of acclimation temperature on the upper thermal tolerance of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus: thermal limits of a North American salmonid. J Fish Biol 80:2420–2433

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Van Leeuwen TE, McLennan D, McKelvey S, Stewart DC, Adams CE, Metcalfe NB (2016) The association between parental life history and offspring phenotype in Atlantic salmon. J Exp Biol 219:374–382

    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh B, Blows MW (2009) Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol S 40:41–59

    Article 

    Google Scholar 

  • Whitlock MC, Phillips PC, Wade MJ (1993) Gene interaction affects the additive genetic variance in subdivided populations with migration and extinction. Evolution 47:1758–1769

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Wright S (1932) Proceedings of the Sixth International Congress on Genetics, Vol. 1. Donald FJ (ed.). The Genetics Society of America, pp 356-366

  • Zhang T, Kong J, Liu B, Wang Q, Cao B, Luan S et al. (2014) Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot (Scophthalmus maximus Linnaeus). Acta Oceano Sin 33:106–110

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The boiling crisis — and how to avoid it

    A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years