in

Global patterns and climatic controls of forest structural complexity

  • 1.

    Ali, A. et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Sci. Total Environ. 706, 135719 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    ADS  Article  Google Scholar 

  • 4.

    Penone, C. et al. Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol. Lett. 22, 170–180 (2019).

    PubMed  Article  Google Scholar 

  • 5.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed  Article  Google Scholar 

  • 6.

    Gough, C. M., Atkins, J. W., Fahey, R. T. & Hardiman, B. S. High rates of primary production in structurally complex forests. Ecology 100, e02864 (2019).

    PubMed  Article  Google Scholar 

  • 7.

    Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406–1414 (2012).

    PubMed  Article  Google Scholar 

  • 8.

    Ammer, C. et al. Key ecological research questions for Central European forests. Basic Appl. Ecol. 32, 3–25 (2018).

    Article  Google Scholar 

  • 9.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. Meteorol. 242, 1–9 (2017).

    Article  Google Scholar 

  • 12.

    Seidel, D., Ehbrecht, M., Annighöfer, P. & Ammer, C. From tree to stand-level structural complexity—Which properties make a forest stand complex? Agric. Meteorol. 278, 107699 (2019).

    Article  Google Scholar 

  • 13.

    Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).

    PubMed  Article  Google Scholar 

  • 14.

    Gough, C. M., Atkins, J. W., Fahey, R. T., Hardiman, B. S. & LaRue, E. A. Community and structural constraints on the complexity of eastern North American forests. Glob. Ecol. Biogeogr. 29, 2107–2118 (2020).

  • 15.

    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).

    Article  Google Scholar 

  • 16.

    Ishii, H. T., Tanabe, S. & Hiura, T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Science 50, 342–355 (2004).

    Google Scholar 

  • 17.

    Pretzsch, H. Forest dynamics, growth, and yield. In Forest Dynamics, Growth and Yield: From Measurement to Model (ed. Pretzsch, H.) 1–39 (Springer, 2009).

  • 18.

    Dassot, M., Constant, T. & Fournier, M. The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann. Sci. 68, 959–974 (2011).

    Article  Google Scholar 

  • 19.

    Ehbrecht, M., Schall, P., Juchheim, J., Ammer, C. & Seidel, D. Effective number of layers: a new measure for quantifying three-dimensional stand structure based on sampling with terrestrial LiDAR. Ecol. Manag. 380, 212–223 (2016).

    Article  Google Scholar 

  • 20.

    Juchheim, J., Ammer, C., Schall, P. & Seidel, D. Canopy space filling rather than conventional measures of structural diversity explains productivity of beech stands. Ecol. Manag. 395, 19–26 (2017).

    Article  Google Scholar 

  • 21.

    Atkins, J. W., Fahey, R. T., Hardiman, B. S. & Gough, C. M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 123, 1387–1405 (2018).

    Article  Google Scholar 

  • 22.

    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).

    Article  Google Scholar 

  • 23.

    Fotis, A. T. et al. Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. Meteorol. 250–251, 181–191 (2018).

    Article  Google Scholar 

  • 24.

    Juchheim, J., Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Effect of tree species mixing on stand structural complexity. Int. J. Res. 93, 75–83 (2020).

    Google Scholar 

  • 25.

    Zemp, D. C. et al. Mixed-species tree plantings enhance structural complexity in oil palm plantations. Agric. Ecosyst. Environ. 283, 106564 (2019).

    Article  Google Scholar 

  • 26.

    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).

    Article  Google Scholar 

  • 27.

    Morin, X. Species richness promotes canopy packing: a promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct. Ecol. 29, 993–994 (2015).

    Article  Google Scholar 

  • 28.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 851–869 https://doi.org/10.1111/nph.15027@10.1111/(ISSN)1469-8137. (2018).

  • 29.

    Pretzsch, H. Size-structure dynamics in mixed versus monospecific stands. In Mixed-Species Forests: Ecology and Management (eds. Pretzsch, H., Forrester, D. I. & Bauhus, J.) 211–269 (Springer, 2017).

  • 30.

    Moncrieff, G. R., Bond, W. J. & Higgins, S. I. Revising the biome concept for understanding and predicting global change impacts. J. Biogeogr. 43, 863–873 (2016).

    Article  Google Scholar 

  • 31.

    Stegen, J. C. et al. Variation in above-ground forest biomass across broad climatic gradients. Glob. Ecol. Biogeogr. 20, 744–754 (2011).

    Article  Google Scholar 

  • 32.

    Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).

    Article  Google Scholar 

  • 33.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 34.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article  Google Scholar 

  • 35.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  • 36.

    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).

    Article  Google Scholar 

  • 37.

    Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).

    Article  Google Scholar 

  • 38.

    Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367–381 (2006).

    PubMed  Article  Google Scholar 

  • 39.

    Klein, T., Randin, C. & Körner, C. Water availability predicts forest canopy height at the global scale. Ecol. Lett. 18, 1311–1320 (2015).

    PubMed  Article  Google Scholar 

  • 40.

    Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 41.

    Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Thonicke, K. et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 47, 1069–1085 (2020).

    Article  Google Scholar 

  • 43.

    Willim, K. et al. Assessing understory complexity in beech-dominated Forests (Fagus sylvatica L.) in Central Europe—from managed to primary forests. Sensors 19, 1684 (2019).

    Article  Google Scholar 

  • 44.

    Eggeling, W. J. Observations on the Ecology of the Budongo Rain Forest, Uganda. J. Ecol. 34, 20–87 (1947).

    Article  Google Scholar 

  • 45.

    Stephens, S. L. & Gill, S. J. Forest structure and mortality in an old-growth Jeffrey pine-mixed conifer forest in north-western Mexico. Ecol. Manag. 205, 15–28 (2005).

    Article  Google Scholar 

  • 46.

    Senf, C., Mori, A. S., Müller, J. & Seidl, R. The response of canopy height diversity to natural disturbances in two temperate forest landscapes. Landsc. Ecol. https://doi.org/10.1007/s10980-020-01085-7. (2020)

  • 47.

    Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 1–8 https://doi.org/10.1038/s41893-020-00609-y. (2020).

  • 48.

    Krug, J. H. A. Adaptation of Colophospermum mopane to extra-seasonal drought conditions: site-vegetation relations in dry-deciduous forests of Zambezi region (Namibia). Ecosystems 4, 25 (2017).

    Google Scholar 

  • 49.

    Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 4385 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 1–10 (2017).

    Article  CAS  Google Scholar 

  • 51.

    Schuldt, B. et al. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? N. Phytol. 210, 443–458 (2016).

    Article  Google Scholar 

  • 52.

    Astrup, R., Bernier, P. Y., Genet, H., Lutz, D. A. & Bright, R. M. A sensible climate solution for the boreal forest. Nat. Clim. Change 8, 11–12 (2018).

    ADS  Article  Google Scholar 

  • 53.

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Klein, T. & Hartmann, H. Climate change drives tree mortality. Science 362, 758–758 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 56.

    Puettmann, K. J., Coates, K. D. & Messier, C. C. A Critique of Silviculture: Managing for Complexity. (Island Press, 2012).

  • 57.

    Camarretta, N. et al. Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches. New For. https://doi.org/10.1007/s11056-019-09754-5. (2019).

  • 58.

    Chiarucci, A. & Piovesan, G. Need for a global map of forest naturalness for a sustainable future. Conserv. Biol. 34, 368–372 (2020).

    PubMed  Article  Google Scholar 

  • 59.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Keane, R. E., Holsinger, L. M. & Loehman, R. Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates. Ecol. Manag. 477, 118498 (2020).

    Article  Google Scholar 

  • 62.

    Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).

    Article  Google Scholar 

  • 63.

    Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9e99. (2020).

  • 64.

    Campbell, N. A. Biology. (Pearson Education, 1996).

  • 65.

    Buchwald, E. A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation. In Proc. Third Expert Meeting on Harmonizing Forest-related Definitions for Use by Various Stakeholders. Vol. 18 (Food and Agriculture Organization of the United Nations, 2005).

  • 66.

    Frey, J., Asbeck, T. & Bauhus, J. Predicting tree-related microhabitats by multisensor close-range remote sensing structural parameters for the selection of retention elements. Remote Sens. 12, 867 (2020).

    ADS  Article  Google Scholar 

  • 67.

    Ehbrecht, M., Schall, P., Ammer, C., Fischer, M. & Seidel, D. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. Ecol. Manag. 432, 860–867 (2019).

    Article  Google Scholar 

  • 68.

    Ehbrecht et al. ehbrechtetal/Stand-structural-complexity-index–SSCI: R-code to compute the stand structural complexity index (SSCI). https://doi.org/10.5281/zenodo.4295910. (2017).

  • 69.

    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. https://doi.org/10.6084/m9.figshare.7504448.v3. (2019)

  • 70.

    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1247 (2014).

  • 72.

    Fehrmann, L. et al. A unified framework for land cover monitoring based on a discrete global sampling grid (GSG). Environ. Monit. Assess. 191, 46 (2019).

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    How to get more electric cars on the road

    Nutrients exported from upland stream water enlarge perennial biomass crops