in

Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes

  • 1.

    Warren J, Topping CJ, James P. A unifying evolutionary theory for the biomass–diversity–fertility relationship. Theor Ecol. 2009;2:119–26.

    Article  Google Scholar 

  • 2.

    Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J Ecol. 1977;65:759–91.

    Article  Google Scholar 

  • 3.

    Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529:390–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.

    Article  Google Scholar 

  • 5.

    Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature. 1996;379:718–20.

    CAS  Article  Google Scholar 

  • 6.

    Grace JB. The factors controlling species density in herbaceous plant communities: an assessment. Perspect Plant Ecol. 1999;2:1–28.

    Article  Google Scholar 

  • 7.

    Grime JP. Plant strategies and vegetation processes. Chichester-New York-Brisbane-Toronto: John Wiley & Sons, Ltd.; 1979.

  • 8.

    Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412:72–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI, et al. Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett. 2006;9:767–73.

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Rajaniemi TK. Explaining productivity-diversity relationships in plants. Oikos. 2003;101:449–57.

    Article  Google Scholar 

  • 11.

    Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, et al. Plant remobals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monogr. 1999;69:535–68.

    Article  Google Scholar 

  • 12.

    Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science. 2015;349:302–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, et al. Productivity is a poor predictor of plant species richness. Science. 2011;333:1750–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Bastida F, García C, Fierer N, Eldridge DJ, Bowker MA, Abades S, et al. Global ecological predictors of the soil priming effect. Nat Commun. 2019;10:3481.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 15.

    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 2017;15:579–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 20.

    Bardgett RD, Wardle DA. Herbivore-mediated linkages between aboveground and belowground communities. Ecology. 2003;84:2258–68.

    Article  Google Scholar 

  • 21.

    Wardle DA. Communities and ecosystems linking the aboveground and belowground components (MPB-34). Princeton (New Jersey): Princeton University Press; 2002.

  • 22.

    Geyer KM, Barrett JE. Unimodal productivity–diversity relationships among bacterial communities in a simple polar soil ecosystem. Environ Microbiol. 2019;21:2523–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Wardle DA. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev. 1992;67:321–58.

    Article  Google Scholar 

  • 25.

    Geyer KM, Altrichter AE, Van Horn DJ, Takacs-Vesbach CD, Gooseff MN, Barrett JE. Environmental controls over bacterial communities in polar desert soils. Ecosphere. 2013;4:art127.

    Article  Google Scholar 

  • 26.

    Langenheder S, Prosser JI. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ Microbiol. 2008;10:2245–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Hopkins FM, Torn MS, Trumbore SE. Warming accelerates decomposition of decades-old carbon in forest soils. Proc Natl Acad Sci USA. 2012;109:1753–61.

    Article  Google Scholar 

  • 28.

    Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Bertness MD, Callaway R. Positive interactions in communities. Trends Ecol Evol. 1994;9:191–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol Ecol. 2016;25:4660–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models. Glob Biogeochem Cycles. 2015;29:1782–1800.

    CAS  Article  Google Scholar 

  • 35.

    Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Maestre FT, Quero J, Gotelli NJ, Escudero A, Ochoa V, Delgado-baquerizo M, et al. Plant species richness and ecosystem multifunctionality in global drylands. Science. 2012;335:214–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, et al. Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci USA. 2019;116:6891–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Kettler TA, Doran JW, Gilbert TL. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America journal. vol. 65. Lincoln, Nebraska: 2001. p. 849–52. Journal Series no. 13277 of the Agric Res Div, Univ Neb, Linc, Ne.

  • 39.

    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Buyer JS, Sasser M. High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol. 2012;61:127–30.

    Article  Google Scholar 

  • 41.

    Frostegård A, Bååth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils. 1996;22:59–65.

    Article  Google Scholar 

  • 42.

    Rinnan R, Bååth E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Appl Environ Microbiol. 2009;75:3611–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Kaiser C, Frank A, Wild B, Koranda M, Richter A. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol Biochem. 2010;42:1650–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Frostegård A, Tunlid A, Bååth E. Use and misuse of PLFA measurements in soils. Soil Biol Biochem. 2011;43:1621–5.

    Article  CAS  Google Scholar 

  • 45.

    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc B. 2014;281:20141988.

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  • 50.

    Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol. 2016;104:936–46.

    Article  Google Scholar 

  • 51.

    Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2003.

  • 52.

    Grace JB. Structural equation modeling and natural systems. Cambridge: Cambridge University Press; 2006.

  • 53.

    Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on International Conference on Machine Learning. Amherst, MA, USA: Morgan Kaufmann Publishers Inc.; 1993.

  • 54.

    Delgado-Baquerizo M. Obscure soil microbes and where to find them. ISME J. 2019;13:2120–4.

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Kuhn SW, Keefer C, Coulter N. Cubist: rule- and instance-based regression modeling. R package version 0.0.19; 2016.

  • 56.

    Bailey VL, Peacock AD, Smith JL, Bolton H. Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol Biochem. 2002;34:1385–9.

    CAS  Article  Google Scholar 

  • 57.

    Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–49.

    PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr. 2013;22:737–49.

    Article  Google Scholar 

  • 59.

    Six J, Frey SD, Thiet RK, Batten KM. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J. 2006;70:555–69.

    CAS  Article  Google Scholar 

  • 60.

    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;348:1–11.

    Google Scholar 

  • 61.

    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA. 2015;112:15684–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Delgado-Baquerizo M, Eldridge DJ. Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems. 2019;22:1220–31.

    Article  Google Scholar 

  • 65.

    Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun. 2019;10:5142.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Gaston KJ. Global patterns in biodiversity. Nature. 2000;405:220–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Srivastava DS, Lawton JH. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Naturalist. 1998;152:510–29.

    CAS  Article  Google Scholar 

  • 68.

    Storch D, Bohdalková E, Okie J. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol Lett. 2018;21:920–37.

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Paquette A, Messier C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr. 2011;20:170–80.

    Article  Google Scholar 

  • 70.

    Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature. 2009;460:616–9.

    CAS  Article  Google Scholar 

  • 71.

    Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA. 2011;108:9508–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, et al. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol. 2015;24:2433–48.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EdC, Paula FS, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci USA. 2013;110:988–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Bastida F, García C, von Bergen M, Moreno JL, Richnow HH, Jehmlich N. Deforestation fosters bacterial diversity and the cyanobacterial community responsible for carbon fixation processes under semiarid climate: a metaproteomics study. Appl Soil Ecol. 2015;93:65–7.

    Article  Google Scholar 

  • 77.

    Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Change. 2016;6:166–71.

    Article  Google Scholar 

  • 78.

    Maron PA, Sarr A, Kaisermann A, Léveque J, Mathieu O, Guigue J, et al. High microbial diversity promotes soil ecosystem functioning. Appl Environ Microbiol. 2018;84:e02738–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 80.

    Delgado-Baquerizo M, Grinyer J, Reich PB, Singh BK. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct Ecol. 2016;30:1862–73.

    Article  Google Scholar 

  • 81.

    Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006;15:259–63.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean