in

Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats

[adace-ad id="91168"]
  • 1.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Cardinale, B. J., Gonzalez, A., Allington, G. R. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).

    Article  Google Scholar 

  • 3.

    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Tovar-Sánchez, E., Hernández-Plata, I., Martínez, M. S., Valencia-Cuevas, L. & Galante, P. M. Heavy metal pollution as a biodiversity threat. Heavy Met. 383 (2018).

  • 5.

    Das, K. K., Das, S. N. & Dhundasi, S. A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res. 128, 412 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Fabiano, C., Tezotto, T., Favarin, J. L., Polacco, J. C. & Mazzafera, P. Essentiality of nickel in plants: A role in plant stresses. Front. Plant Sci. 6, 754 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Sreekanth, T.V.M., Nagajyothi, P. C., Lee, K. D. & Prasad, T.N.V.K.V. Occurrence, physiological responses and toxicity of nickel in plants. Int.J.Environ.Sci.Technol.10(5), 1129–1140 (2013).

  • 8.

    Pietrini, F. et al. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content. Environ. Sci. Pollut.22, 482–494 (2015).

  • 9.

    Georgiadou, E. C. et al. Influence of heavy metals (Ni, Cu and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Front. Plant Sci.9, 862 (2018).

  • 10.

    Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Shen, Z. J., Chen, Y. S. & Zhang, Z. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area. China. Ecotoxicol. Environ. Saf. 143, 19–27 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Xun, E., Zhang, Y., Zhao, J. & Guo, J. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness. Ecotox. Environ. Safe. 145, 235–243 (2017).

    CAS  Article  Google Scholar 

  • 13.

    Meindl, G. A. & Ashman, T. L. Effects of soil metals on pollen germination, fruit production, and seeds per fruit differ between a Ni hyperaccumulator and a congeneric nonaccumulator. Plant Soil. 420, 493–503 (2017).

    CAS  Article  Google Scholar 

  • 14.

    Temizer, İK., Güder, A., Temel, F. A. & Esin, A. V. C. I. A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments. Environ. Monit. Assess. 190, 462 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 15.

    Baumann, H. A., Morrison, L. & Stengel, D. B. Metal accumulation and toxicity measured by PAM—Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 72, 1063–1075 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Liang, S. et al. How Chlorella sorokiniana and its high tolerance to Pb might be a potential Pb biosorbent. Pol. J. Environ. Stud. 26, 1139–1146 (2017).

    CAS  Article  Google Scholar 

  • 17.

    Ares, A., Itouga, M., Kato, Y. & Sakakibara, H. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L. B. Environ. Contam. Tox. 100, 444–450 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Stanković, J. D., Sabovljević, A. D. & Sabovljević, M. S. Bryophytes and heavy metals: A review. Acta Bot. Croat. 77, 109–118 (2018).

    Article  Google Scholar 

  • 19.

    Wang, S., Zhang, Z. & Wang, Z. Bryophyte communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China. Sci. Total Environ. 538, 270–278 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    Vanderpoorten, A. et al. To what extent are bryophytes efficient dispersers?. J. Ecol. 107, 2149–2154 (2019).

    Article  Google Scholar 

  • 21.

    Carginale, V. et al. Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata. Protoplasma. 223, 53–61 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Yan, Y., Zhang, Q., Wang, G. G. & Fang, Y. M. Atmospheric deposition of heavy metals in Wuxi, China: Estimation based on native moss analysis. Ecotox. Environ. Safe. 188, 360 (2016).

    Google Scholar 

  • 23.

    Gupta, R. & Asthana, A. K. Diversity and distribution of liverworts across habitats and altitudinal gradient at Pachmarhi Biosphere Reserve (India). Plant Sci. Today 3, 354–359 (2016).

    Article  Google Scholar 

  • 24.

    Gao, S., Yu, H. N., Xu, R. X., Cheng, A. X. & Lou, H. X. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry 111, 48–58 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Wu, Y. F. et al. A bHLH Transcription factor regulates bisbibenzyl biosynthesis in the liverwort Plagiochasma appendiculatum. Plant Cell Physiol. 59, 1187–1199 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Venugopal, M. & Nair, M. C. Bryophyte diversity of Thamarassery pass (Wayanad pass) in the Western Ghats of Kerala. Plant Sci. Today 4, 41–48 (2017).

    Article  Google Scholar 

  • 27.

    Pant, G. & Tewari, S. D. Bryophytes as Biogeoindicators: Bryophytic Associations of Mineral-Enriched Substrates in Kumaon Himalaya. Topics in Bryology 165–184 (Allied Publishers Ltd., New Delhi, 1998).

    Google Scholar 

  • 28.

    Ghate, S. & Chaphekar, S. B. Plagiochasma appendiculatum as a biotest for water quality assessment. Environ. Pollut. 108, 173–181 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Choudhary, S.P., Kanwar, M., Bhardwaj, R., Yu, J.Q. & Tran, L.S.P. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One. 7(3) (2012).

  • 30.

    Bai, C., Liu, L. & Wood, B. W. Nickel affects xylem Sap RNase a and converts RNase A to a urease. BMC Plant Biol. 13, 207 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Bai, C., Reilly, C. C. & Wood, B. W. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol. 140, 433–443 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils. 6, 68–72 (1988).

    CAS  Article  Google Scholar 

  • 33.

    Poonkothai, M. V. B. S. & Vijayavathi, B. S. Nickel as an essential element and a toxicant. Int. J. Environ. Sci. 1, 285–288 (2012).

    Google Scholar 

  • 34.

    Freitas, D. S. et al.Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front. Plant Sci.9(2018).

  • 35.

    Rout, G. R. & Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. in Sustainable Agriculture (pp. 873–884). (Springer, Dordrecht, 2009).

  • 36.

    Myking, T. et al.Effects of Air Pollution from a Nickel-Copper Industrial Complex on Boreal Forest Vegetation in the Joint Russian-Norwegian-Finnish Border Area (2009).

  • 37.

    Kowalska, J. B., Mazurek, R., Gąsiorek, M. & Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health. 1–26 (2018).

  • 38.

    Awadh, S. M., Al-Kilabi, J. A. & Khaleefah, N. H. Comparison the geochemical background, threshold and anomaly with pollution indices in the assessment of soil pollution: Al-Hawija, north of Iraq case study. Int. J. Sci. Res. 4, 2357–2363 (2015).

    Google Scholar 

  • 39.

    Dung, T. T. T., Cappuyns, V., Swennen, R. & Phung, N. K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 12, 335–353 (2013).

    CAS  Article  Google Scholar 

  • 40.

    Mazurek, R. et al. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 168, 839–850 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Čecháková, K., Motyka, O., Válová, E., Macečková, B. & Stalmachová, B. Investigation of the influence of nickel in precipitation through the surface properties of moss Pleurozium schreberi Carpath. J. Earth Environ. 9, 153–158 (2014).

    Google Scholar 

  • 42.

    Marchiol, L., Assolari, S., Sacco, P. & Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multiexcess soil. Environ. Pollut. 132, 21–27 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Tuna, A. L., Burun, B., Yokas, I. & Coban, E. The effects of heavy metals on pollen germination and pollen tube length in the tobacco plant. Turk. J. Biol. 26, 109–113 (2002).

    CAS  Google Scholar 

  • 44.

    Mostofa, M. G., Hossain, M. A., Fujita, M. & Tran, L. S. P. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci. Rep. 5, 11433 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Choudhury, S. & Panda, S. K. Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Curr. Sci. 342–348 (2004).

  • 46.

    Choudhury, S. & Panda, S. K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut.167, 73–90 (2005).

  • 47.

    Penny, C., Dickinson, N. M. & Lepp, N. W. The effect of heavy metal contamination on the pigment profiles of Torreya sp. in Remediation and Management of Degraded Lands. (2018).

  • 48.

    Rau, S., Miersch, J., Neumann, D., Weber, E. & Krauss, G. J. Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels. Environ. Exp. Bot. 59, 299–306 (2007).

    CAS  Article  Google Scholar 

  • 49.

    Foyer, C. H. & Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 155, 2–18 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 23, 249–268 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Yadav, N. S., Shukla, P. S., Jha, A., Agarwal, P. K. & Jha, B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 12, 188 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Subbiah, B. V. & Asija, G. L. A rapid procedure for estimation of available nitrogen in soils. Curr Sci. 25, 259–260 (1956).

    CAS  Google Scholar 

  • 53.

    Olsen, S.R., Cole, C,V., Watanabe, F.S. & Dean, L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U.S.D.A. Circ. 939. (U.S. Govt. Printing Office: Washington, DC) (1954).

  • 54.

    Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W. & Liqiang, Y. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. China Univ. Geosci. 19, 230–241 (2008).

    Article  Google Scholar 

  • 55.

    Choudhary, S. P., Kanwar, M., Bhardwaj, R., Gupta, B. D. & Gupta, R. K. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84, 592–600 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Lacy, R.C., P.S. Miller & Traylor-Holzer, K. Vortex 10 User’s Manual. 1 June 2018 update. IUCN SSC Conservation Breeding Specialist Group, and Chicago Zoological Society, Apple Valley, Minnesota, USA (2018).

  • 57.

    Brown, P. H., Welch, R. M. & Cary, E. E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 85, 801–803 (1987).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Seregin, I. V., Kozhevnikova, A. D., Kazyumina, E. M. & Ivanov, V. B. Nickel toxicity and distribution in maize roots. Russ. J. Plant Physiol. 50, 711–717 (2003).

    CAS  Article  Google Scholar 

  • 59.

    Shin, R., Berg, R. H. & Schachtman, D. P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 1350–1357 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Saeed, A. I. et al. TM4a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean