Quicke, D. L. Parasitic Wasps (Chapman & Hall Ltd., 1997).
Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).
Mayhew, P. J. & van Alphen, J. J. M. Gregarious development in alysiine parasitoids evolved through a reduction in larval aggression. Anim. Behav. 58 , 131–141 (1999).
Mayhew, P. J. & Hardy, I. C. W. Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. Am. Nat. 151, 409–424 (1998).
Google Scholar
Schmidt, J. M. & Smith, J. J. B. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: A possible mechanism of host radius measurement. J. Exp. Biol. 125, 271–285 (1986).
Boivin, G. & Baaren, J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 3, 469–474 (2000).
Rosenheim, J. A., Wilhoit, L. R. & Armer, C. A. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96, 439–449 (1993).
Google Scholar
Mayhew, P. J. The evolution of gregariousness in parasitoid wasps. Proc. R. Soc. Lond. B Biol. 265, 383–389 (1998).
Harvey, P. H. & Partridge, L. Murderous mandibles and black holes in hymenopteran wasps. Nature 326, 128–129 (1987).
Google Scholar
Pexton, J. J. & Mayhew, P. J. Competitive interactions between parasitoid larvae and the evolution of gregarious development. Oecologia 141, 179–190 (2004).
Google Scholar
Pexton, J. J. & Mayhew, P. J. Immobility: The key to family harmony? Trends Ecol. Evol. 16, 7–9 (2001).
Google Scholar
Godfray, H. C. J. The evolution of clutch size in parasitic wasps. Am. Nat. 129, 221–233 (1987).
Laing, J. E. & Corrigan, J. E. Intrinsic competition between the gregarious parasite, Cotesia glomeratus and the solitary parasite Cotesia rubecula (Hymenoptera: Braconidae) for their host Artogeia rapae (Lepidoptera: Pieridae). Entomophaga 32, 493–501 (1987).
Pexton, J. J. & Mayhew, P. J. Clutch size adjustment, information use and the evolution of gregarious development in parasitoid wasps. Behav. Ecol. Soc. 58, 99–110 (2005).
Reitz, S. R. & Adler, P. H. Fecundity and oviposition of Eucelatoria bryani, a gregarious parasitoid of Helicoverpa zea and Heliothis virescens. Entomol. Exp. Appl. 75, 175–181 (1995).
Wei, K., Tang, Y. L., Wang, X. Y., Cao, L. M. & Yang, Z. Q. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size. Ecol. Entomol. 39, 101–108 (2014).
van Alphen, J. J. M. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Ann. Rev. Entomol. 35, 59–79 (1990).
Mayhew, P. J. & Glaizot, O. Integrating theory of clutch size and body size evolution for parasitoids. Oikos 92, 372–376 (2001).
Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. J. Appl. Entomol. 143, 441–450 (2019).
Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: A manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).
Visser, M. E. The importance of being large: The relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). J. Anim. Ecol. 63, 963–978 (1994).
Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).
Google Scholar
Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Anim. Behav. 66, 1119–1128 (2003).
Takagi, M. The reproductive strategy of the gregarious parasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae). Oecologia 68, 1–6 (1985).
Google Scholar
Jervis, M. A., Ferns, P. N. & Heimpel, G. E. Body size and the timing of egg production in parasitoid wasps: A comparative analysis. Funct. Ecol. 17, 375–383 (2003).
Waage, J. K. & Lane, J. A. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Ecol. 53, 417–426 (1984).
Waage, J. K. & Ming, N. S. The reproductive strategy of a parasitic wasp: I. Optimal progeny and sex allocation in Trichogramma evanescens. J. Anim. Ecol. 53, 401–415 (1984).
Rabinovich, J. E., Jorda, M. T. & Bernstein, C. Local mate competition and precise sex ratios in Telenomus fariai (Hymenoptera: Scelionidae), a parasitoid of triatomine eggs. Behav. Ecol. Sociobiol. 48, 308–315 (2000).
Goubault, M., Mack, A. F. & Hardy, I. C. W. Encountering competitors reduces clutch size and increases offspring size in a parasitoid with female–female fighting. Proc. R. Soc. B Biol. 274, 2571–2577 (2007).
Duval, J. F., Brodeur, J., Doyon, J. & Boivin, G. Impact of superparasitism time intervals on progeny survival and fitness of an egg parasitoid. Ecol. Entomol. 43, 310–317 (2018).
Mesterton-Gibbons, M. & Hardy, I. C. W. The influence of contests on optimal clutch size: A game–theoretic model. Proc. R. Soc. Lond. B Biol. 271, 971–978 (2004).
Koppik, M., Thiel, A. & Hoffmeister, T. S. Adaptive decision making or differential mortality: What causes offspring emergence in a gregarious parasitoid? Entomol. Exp. Appl. 150, 208–216 (2014).
Heimpel, G. E. Host–parasitoid population dynamics. In Parasitoid population biology (eds Hochberg, M. E. & Ives, A. R.) 27–40 (Princeton, 2000).
Zaviezo, T. & Mills, M. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).
Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76, 412–425 (1995).
Segoli, M. & Rosenheim, J. A. The effect of body size on oviposition success of a minute parasitoid in nature. Ecol. Entomol. 40, 483–485 (2015).
Gao, S. K., Wei, K., Tang, Z. L., Wang, X. Y. & Yang, Z. Q. Effect of parasitoid density on the timing of parasitism and development duration of progeny in Sclerodermus pupariae (Hymenoptera: Bethylidae). Biol. Control 97, 57–62 (2016).
Anderson, R. C. & Paschke, J. D. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Am. 61, 1–5 (1968).
Hoffman, G. D. & Rao, S. Oviposition site selection on oats: The effect of plant architecture, plant and leaf age, tissue toughness, and hardness on cereal leaf beetle, Oulema melanopus. Entomol. Exp. Appl. 141, 232–244 (2011).
Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep. UK 9, 1–7 (2019).
Google Scholar
Hardy, I. C. W. Sex ratio and mating structure in the parasitoid Hymenoptera. Oikos 69, 3–20 (1994).
Godfray, H. C. J. Models for clutch size and sex ratio with sibling interaction. Theor. Popul. Biol. 30, 215–231 (1986).
Google Scholar
Hardy, I. C. W. Non-binomial sex allocation and brood sex ratio variances in the parasitoid Hymenoptera. Oikos 65, 143–158 (1992).
Petersen, G. & Hardy, I. C. W. The importance of being larger: Parasitoid intruder–owner contests and their implications for clutch size. Anim. Behav. 51, 1363–1373 (1996).
Klomp, H. & Teerink, B. J. The significance of oviposition rates in the egg parasite, Trichogramma embryophagum Htg. Arch. Neerl. Zool. 17, 350–375 (1967).
May, R. M., Hassell, M. P., Anderson, R. M. & Tonkyn, D. W. Density dependence in host–parasitoid models. J. Anim. Ecol. 50, 855–865 (1981).
Google Scholar
Hoddle, M. S., Van Driesche, R. G., Elkinton, J. S. & Sanderson, J. P. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol. Exp. Appl. 87, 15–28 (1998).
Samková, A., Raška, J., Hadrava, J. & Skuhrovec, J. Scarcity of hosts for gregarious parasitoids indicates an increase of individual offspring fertility by reducing their own fertility. bioRxiv https://doi.org/10.1101/2021.03.05.434037 (2021).
Google Scholar
van Dijken, M. J. & Waage, J. K. Self and conspecific superparasitism by the egg parasitoid Trichogramma evanescens. Entomol. Exp. Appl. 43, 183–192 (1987).
van de Vijver, E. et al. Inter-and intrafield distribution of cereal leaf beetle species (Coleoptera: Chrysomelidae) in Belgian winter wheat. Environ. Entomol. 48, 276–283 (2019).
Google Scholar
Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Host specificity of the parasitic wasp Anaphes flavipes (Hymenoptera: Mymaridae) and a new defence in its hosts (Coleoptera: Chrysomelidae: Oulema spp.). Insects 11, 175 (2020).
Google Scholar
Bezděk, J. & Baselga, A. Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae). Acta Entomol. Mus. Nat. Pragae 55, 273–304 (2015).
Anderson, R. C. & Paschke, J. D. Additional observations on the biology of Anaphes flavipes (Hymenoptera: Mymaridae), with special reference to the effects of temperature and superparasitism on development. Ann. Entomol. Soc. Am. 62, 1316–1321 (1969).
R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Core Team, 2020).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). https://CRAN.R-project.org/package=lme4.
Source: Ecology - nature.com