in

Snake-like limb loss in a Carboniferous amniote

[adace-ad id="91168"]
  • Caldwell, M. W. “Without a leg to stand on”: on the evolution and development of axial elongation and limblessness in tetrapods. Can. J. Earth Sci. 40, 573–588 (2003).

    Google Scholar 

  • Bejder, L. & Hall, B. K. Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss. Evol. Dev. 4, 445–458 (2002).

    PubMed 

    Google Scholar 

  • Gans, C. Locomotion and burrowing in limbless vertebrates. Nature 242, 414–415 (1973).

    Google Scholar 

  • Gans, C. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15, 455–467 (1975).

    Google Scholar 

  • Camaiti, M., Evans, A. R., Hipsley, C. A. & Chapple, D. G. A farewell to arms and legs: a review of limb reduction in squamates. Biol. Rev. 96, 1035–1050 (2021).

    PubMed 

    Google Scholar 

  • Brandley, M. C., Huelsenbeck, J. P. & Wiens, J. J. Rates and patterns in the evolution of snake‐like body form in squamate reptiles: evidence for repeated re‐evolution of lost digits and long‐term persistence of intermediate body forms. Evol. Int. J. Org. Evol. 62, 2042–2064 (2008).

    Google Scholar 

  • Skinner, A., Lee, M. S. & Hutchinson, M. N. Rapid and repeated limb loss in a clade of scincid lizards. BMC Evol. Biol. 8, 310 (2008).

  • Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e5565 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Woltering, J. M. et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev. Biol. 332, 82–89 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Jaekel, O. Über die klassen der tetrapoden [About the classes of the tetrapods]. Zool. Anz. 34, 193–212 (1909).

    Google Scholar 

  • Anderson J. S. in Major Transitions in Vertebrate Evolution (eds Anderson, J. S. & Sues, H.-D.) 182–227 (Indiana Univ. Press, 2007).

  • Cope, E. D. Synopsis of the extinct Batrachia from the Coal Measures. Ohio Geol. Surv. 2, 349–411 (1875).

    Google Scholar 

  • Farrell, Ú. Pyritization of soft tissues in the fossil record: an overview. Paleontol. Soc. Pap. 20, 35–58 (2014).

    Google Scholar 

  • Mann, A. Cranial ornamentation of a large Brachydectes newberryi (Recumbirostra: Lysorophia) from Linton, Ohio. Vertebr. Anat. Morphol. Palaeontol. 6, 91–96 (2018).

    Google Scholar 

  • Mann, A., Pardo, J. D. & Maddin, H. C. Infernovenator steenae, a new serpentine recumbirostran from the ‘Mazon Creek’ Lagerstätte further clarifies lysorophian origins. Zool. J. Linn. Soc. 187, 506–517 (2019).

    Google Scholar 

  • Maisano, J. A. A survey of state of ossification in neonatal squamates. Herpetol. Monogr. 15, 135–157 (2001).

  • Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).

    Google Scholar 

  • Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).

    Google Scholar 

  • Pardo, J. D. & Anderson, J. S. Cranial morphology of the Carboniferous–Permian tetrapod Brachydectes newberryi (Lepospondyli, Lysorophia): new data from µCT. PLoS ONE 11, e0161823 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Milner, A. R. Small temnospondyl amphibians from the Middle Pennsylvanian of Illinois. Paleontology 25, 635–664 (1982).

    Google Scholar 

  • Godfrey, S. A diminutive temnospondyl amphibian from the Pennsylvanian of Illinois. Can. J. Earth Sci. 40, 507–514 (2003).

    Google Scholar 

  • Mann, A. & Maddin, H. C. Diabloroter bolti, a short-bodied recumbirostran ‘microsaur’ from the Francis Creek Shale, Mazon Creek, Illinois. Zool. J. Linn. Soc. 187, 494–505 (2019).

    Google Scholar 

  • Mann, A., McDaniel, E. J., McColville, E. R. & Maddin, H. C. Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles. R. Soc. Open Sci. 6, 191191 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mann, A. & Gee, B. M. Lissamphibian-like toepads in an exceptionally preserved amphibamiform from Mazon Creek. J. Vertebr. Paleontol. 39, e1727490 (2020).

    Google Scholar 

  • Wellstead, C. F. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bull. Am. Mus. Nat. Hist. 209, 1–90 (1991).

    Google Scholar 

  • Sallan, L. C. & Coates, M. I. The long-rostrumed elasmobranch Bandringa Zangerl, 1969, and taphonomy within a Carboniferous shark nursery. J. Vertebr. Paleontol. 34, 22–33 (2014).

    Google Scholar 

  • Allison, P. A. & Briggs, D. E. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).

    Google Scholar 

  • Briggs, D. E. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003).

    CAS 

    Google Scholar 

  • Rieppel, O. Studies on skeleton formation in reptiles. V. Patterns of ossification in the skeleton of Alligator mississippiensis Daudin (Reptilia, Crocodylia). Zool. J. Linn. Soc. 109, 301–325 (1993).

    Google Scholar 

  • Sheil, C. A. Skeletal development of Macrochelys temminckii (Reptilia: Testudines: Chelydridae). J. Morphol. 263, 71–106 (2005).

    PubMed 

    Google Scholar 

  • Roscito, J. G. & Rodrigues, M. T. Skeletal development in the fossorial gymnophthalmids Calyptommatus sinebrachiatus and Nothobachia ablephara. Zoology 115, 289–301 (2012).

    PubMed 

    Google Scholar 

  • Boisvert, C. A. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history. J. Exp. Zool. B 312, 1–29 (2009).

    Google Scholar 

  • Klembara, J. & Janiga, M. Variation in Discosauriscus austriacus (Makowsky, 1876) from the Lower Permian of the Boskovice Furrow (Czech Republic). Zool. J. Linn. Soc. 108, 247–270 (1993).

    Google Scholar 

  • Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Mann, A., Calthorpe, A. S. & Maddin, H. C. Joermungandr bolti, an exceptionally preserved ‘microsaur’ from the Mazon Creek Lagerstätte reveals patterns of integumentary evolution in Recumbirostra. R. Soc. Open Sci. 8, 210319 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Swofford, D. Phylogenetic analysis using parsimony (PAUP) v.4.0b10 (Sinauer Associates, 2002).

  • Cohn, M. J. & Bright, P. E. Molecular control of vertebrate limb development, evolution and congenital malformations. Cell Tissue Res. 296, 3–17 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Mizuhashi, K. et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254–258 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marchini, M. & Rolian, C. Artificial selection sheds light on developmental mechanisms of limb elongation. Evolution 72, 825–837 (2018).

    PubMed 

    Google Scholar 

  • Rolian, C. Endochondral ossification and the evolution of limb proportions. WIREs Dev. Biol. 9, e373 (2020).

  • Weir, E. C. et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl Acad. Sci. USA 93, 10240–10245 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marchini, M., Hernandez, E. S. & Rolian, C. Morphology and development of a novel murine skeletal dysplasia. PeerJ 7, e7180 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shapiro, M. D., Hanken, J. & Rosenthal, N. Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. J. Exp. Zool. B 297, 48–56 (2003).

    Google Scholar 

  • Leal, F. & Cohn, M. J. Loss and re-emergence of legs in snakes by modular evolution of Sonic hedgehog and HOXD enhancers. Curr. Biol. 26, 2966–2973 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Leal, F. & Cohn, M. J. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 56, e23077 (2018).

  • Lande, R. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32, 73–92 (1978).

    PubMed 

    Google Scholar 

  • Anderson, J. S. Revision of the aïstopod genus Phlegethontia (Tetrapoda: Lepospondyli). J. Paleontol. 76, 1029–1046 (2002).

    Google Scholar 

  • Anderson, J. S. A new aïstopod (Tetrapoda: Lepospondyli) from Mazon Creek, Illinois. J. Vertebr. Paleontol. 23, 79–88 (2003).

    Google Scholar 

  • Shapiro, M. D. Developmental morphology of limb reduction in Hemiergis (Squamata: Scincidae): chondrogenesis, osteogenesis, and heterochrony. J. Morphol. 254, 211–231 (2002).

    PubMed 

    Google Scholar 

  • Herbst, E. C. & Hutchinson, J. R. New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 157–175 (2019).

    CAS 

    Google Scholar 

  • Carroll, R. L. & Gaskill, P. The order Microsauria. Mem. Am. Philos. Soc. 126, 1–211 (1978).

    Google Scholar 

  • Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J. & Jacobs, L. L. A fossil snake with limbs. Science 287, 2010–2012 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Zaher, H., Apesteguia, S. & Scanferla, C. A. The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zool. J. Linn. Soc. 156, 801–826 (2009).

    Google Scholar 

  • Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).

    Google Scholar 

  • Camp, C. L. Classification of the lizards. Bull. Am. Mus. Nat. Hist. 48, 289–480 (1923).

    Google Scholar 

  • Essex, R. Studies in reptilian degeneration. Proc. Zool. Soc. Lond. 97, 879–945 (1927).

    Google Scholar 

  • Sewertzoff, A. N. Studien über die reduktion der organe der wirbeltiere. Zool. Jahrb. Abt. Anat. Ontog. Tiere 53, 611–699 (1931).

    Google Scholar 


  • Source: Ecology - nature.com

    An intergenerational approach to parasitoid fitness determined using clutch size

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry