in

Priority effects in microbiome assembly

  • 1.

    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Naturalist 111, 1119–1144 (1977).

    Article 

    Google Scholar 

  • 2.

    Shulman, M. J. et al. Priority effects in the recruitment of juvenile coral reef fishes. Ecology 64, 1508–1513 (1983).

    Article 

    Google Scholar 

  • 3.

    Alford, R. A. & Wilbur, H. M. Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66, 1097–1105 (1985).

    Article 

    Google Scholar 

  • 4.

    Grman, E. & Suding, K. N. Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restor. Ecol. 18, 664–670 (2010).

    Article 

    Google Scholar 

  • 5.

    Almany, G. R. Priority effects in coral reef fish communities. Ecology 84, 1920–1935 (2003).

    Article 

    Google Scholar 

  • 6.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015). This study defines mechanisms by which early-arriving species affect late-arriving species (niche pre-emption and niche modification) and describes how and when they are expected to influence community assembly outcomes.

    Article 

    Google Scholar 

  • 7.

    Mariotte, P. et al. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Suding, K. N., Gross, K. L. & Houseman, G. R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013). Uncovered the molecular mechanism underlying priority effects between strains of Bacteroides in the mouse gut microbiota.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Martínez, I. et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 7, e36521 (2018). Inoculated mice with donor communities at different time points; the mature communities most resembled whichever donor community was inoculated first.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Cheong, J. Z. A. et al. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME J. https://doi.org/10.1038/s41396-021-00901-5 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol. Evol. 3, 1445–1454 (2019). This study experimentally manipulated the assembly sequence of strains in a complex synthetic community in the plant phyllosphere.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Halliday, F. W. et al. Facilitative priority effects drive parasite assembly under coinfection. Nat. Ecol. Evol. 4, 1510–1521 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Peay, K. G., Belisle, M. & Fukami, T. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. Biol. Sci. 279, 749–758 (2012).

    PubMed 

    Google Scholar 

  • 19.

    Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015). Showed that priority effects between commensal and pathogenic bacteria in the plant rhizosphere can be predicted based on overlap in resource consumption in vitro.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Kennedy, P. G., Peay, K. G. & Bruns, T. D. Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology 90, 2098–2107 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Fukami, T. et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Svoboda, P., Lindström, E. S., Ahmed Osman, O. & Langenheder, S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 12, 644–646 (2018). Demonstrated that the strength of priority effects in an aquatic community was a product of how well each community was adapted to the habitat and the amount of time between their dispersal events.

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Long, Z. T. & Karel, I. Resource specialization determines whether history influences community structure. Oikos 96, 62–69 (2002).

    Article 

    Google Scholar 

  • 27.

    Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Species phylogenetic relatedness, priority effects, and ecosystem functioning. Ecology 93, 1164–1172 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5, e00682–13 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl Med. 8, 343ra81 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Tucker, C. M. & Fukami, T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc. Biol. Sci. 281, 20132637 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Poza-Carrion, C., Suslow, T. & Lindow, S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology 103, 341–351 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Monier, J.-M. & Lindow, S. E. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49, 343–352 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Potnis, N. et al. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80, 3173–3180 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Zhang, Y., Kastman, E. K., Guasto, J. S. & Wolfe, B. E. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat. Commun. 9, 336 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Chang, P. V. Chemical mechanisms of colonization resistance by the gut microbial metabolome. ACS Chem. Biol. 15, 1119–1126 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Borton, M. A. et al. Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. Microbiome 5, 47 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Foster, J. L. & Fogleman, J. C. Bacterial succession in necrotic tissue of agria cactus (Stenocereus gummosus). Appl. Environ. Microbiol. 60, 619–625 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    O’Keeffe, K. R., Halliday, F. W., Jones, C. D., Carbone, I. & Mitchell, C. E. Parasites, niche modification, and the host microbiome: a field survey of multiple parasites. Mol. Ecol. 30, 2404–2416 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Joo, J. et al. Bacteriophage-mediated competition in Bordetella bacteria. Proc. Biol. Sci. 273, 1843–1848 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Fernández, L., Rodríguez, A. & García, P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 12, 1171–1179 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Veiga, P. et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl Acad. Sci. USA 107, 18132–18137 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Topisirovic, L. et al. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int. J. Food Microbiol. 112, 230–235 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    De Vuyst, L. & Leroy, F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13, 194–199 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 48.

    ten Cate, J. M. Biofilms, a new approach to the microbiology of dental plaque. Odontology 94, 1–9 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. Two dynamic regimes in the human gut microbiome. PLoS Comput. Biol. 13, e1005364 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Zhang, Q.-G. & Zhang, D.-Y. Colonization sequence influences selection and complementarity effects on biomass production in experimental algal microcosms. Oikos 116, 1748–1758 (2007).

    Article 

    Google Scholar 

  • 54.

    Dickie, I. A., Fukami, T., Wilkie, J. P., Allen, R. B. & Buchanan, P. K. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol. Lett. 15, 133–141 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Bittleston, L. S., Gralka, M., Leventhal, G. E., Mizrahi, I. & Cordero, O. X. Context-dependent dynamics lead to the assembly of functionally distinct microbial communities. Nat. Commun. 11, 1440 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Boyle, J. A., Simonsen, A. K., Frederickson, M. E. & Stinchcombe, J. R. Priority effects alter interaction outcomes in a legume-rhizobium mutualism. Proc. Biol. Sci. 288, 20202753 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Fukami, T. & Morin, P. J. Productivity–biodiversity relationships depend on the history of community assembly. Nature 424, 423–426 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Wagg, C., Schlaeppi, K., Banerjee, S., Juramae, E. E. & van der Heijden, M. G. A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Rummens, K., De Meester, L. & Souffreau, C. Inoculation history affects community composition in experimental freshwater bacterioplankton communities. Environ. Microbiol. 20, 1120–1133 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016). This study identified features of the resident microbiome (bacterial taxa and genes) that predicted variation in the persistence of a probiotic among subjects in a clinical trial.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Christian, N., Herre, E. A., Mejia, L. C. & Clay, K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc. Biol. Sci. 284, 20170641 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Alavi, S. et al. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 181, 1533–1546 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Hiscox, J. et al. Priority effects during fungal community establishment in beech wood. ISME J. 9, 2246–2260 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Losos, J. B. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Glitzenstein, J. S., Harcombe, P. A. & Streng, D. R. Disturbance, succession, and maintenance of species diversity in an east texas forest. Ecol. Monogr. 56, 243–258 (1986).

    Article 

    Google Scholar 

  • 70.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 852 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Chappell, C. R. & Fukami, T. Nectar yeasts: a natural microcosm for ecology. Yeast 35, 417–423 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Loeuille, N. & Leibold, M. A. Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. Am. Nat. 171, 788–799 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Vallespir Lowery, N. & Ursell, T. Structured environments fundamentally alter dynamics and stability of ecological communities. Proc. Natl Acad. Sci. USA 116, 379–388 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Wittmann, M. J. & Fukami, T. Eco-evolutionary buffering: rapid evolution facilitates regional species coexistence despite local priority effects. Am. Nat. 191, E171–E184 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Eitam, A., Blaustein, L. & Mangel, M. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146, 36–42 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 78.

    Woody, S. T., Ives, A. R., Nordheim, E. V. & Andrews, J. H. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces. Ecology 88, 1513–1524 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 79.

    Wein, T. et al. Carrying capacity and colonization dynamics of Curvibacter in the hydra host habitat. Front. Microbiol. 9, 443 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Tewksbury, J. J. & Lloyd, J. D. Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127, 425–434 (2001).

    PubMed 
    Article 

    Google Scholar 

  • 82.

    Monier, J.-M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc. Natl Acad. Sci. USA 100, 15977–15982 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    LaSarre, B., McCully, A. L., Lennon, J. T. & McKinlay, J. B. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J. 11, 337–348 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    McCully, A. L., LaSarre, B. & McKinlay, J. B. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism. Environ. Microbiol. 19, 3538–3550 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Fürst, U. et al. Perception of Agrobacterium tumefaciens flagellin by FLS2XL confers resistance to crown gall disease. Nat. Plants 6, 22–27 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 87.

    Lu, P., Bian, G., Pan, X. & Xi, Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl. Trop. Dis. 6, e1754 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 89.

    Onoda, Y. et al. Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. J. Ecol. 102, 167–175 (2014).

    Article 

    Google Scholar 

  • 90.

    Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 91.

    Malerba, M. E., Palacios, M. M., Palacios Delgado, Y. M., Beardall, J. & Marshall, D. J. Cell size, photosynthesis and the package effect: an artificial selection approach. N. Phytol. 219, 449–461 (2018).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 94.

    Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 69, 5443–5452 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Tecon, R., Ebrahimi, A., Kleyer, H., Erev Levi, S. & Or, D. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc. Natl Acad. Sci. USA 115, 9791–9796 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    van der Wal, A., Tecon, R., Kreft, J.-U., Mooij, W. M. & Leveau, J. H. J. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PLoS ONE 8, e75633 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 97.

    Pande, S. et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 10, 1413–1423 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 98.

    Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 99.

    Hol, F. J. H., Galajda, P., Woolthuis, R. G., Dekker, C. & Keymer, J. E. The idiosyncrasy of spatial structure in bacterial competition. BMC Res. Notes 8, 245 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 101.

    Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 12, 843–850 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 102.

    Morella, N. M., Zhang, X. & Koskella, B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 3, 177–190 (2019).

    Article 

    Google Scholar 

  • 103.

    Scharschmidt, T. C. et al. A wave of regulatory t cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Sadd, B. M., Kleinlogel, Y., Schmid-Hempel, R. & Schmid-Hempel, P. Trans-generational immune priming in a social insect. Biol. Lett. 1, 386–388 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 105.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00002-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 107.

    Meadow, J. F., Bateman, A. C., Herkert, K. M., O’Connor, T. K. & Green, J. L. Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 1, e53 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Vannette, R. L. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51, 363–386 (2020).

    Article 

    Google Scholar 

  • 109.

    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 110.

    Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81, 7570–7581 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 112.

    Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    Braga, L. P. P. et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8, 52 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 115.

    Rao, C. et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 591, 633–638 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    Schluter, D., Price, T. D. & Grant, P. R. Ecological character displacement in Darwin’s finches. Science 227, 1056–1059 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 117.

    Zee, P. C. & Fukami, T. Priority effects are weakened by a short, but not long, history of sympatric evolution. Proc. R. Soc. Lond. B Biol. Sci. 285, 20171722 (2018).

    Google Scholar 

  • 118.

    Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 119.

    Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 120.

    Urban, M. C. & De Meester, L. Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc. R. Soc. Lond. B Biol. Sci. 276, 4129–4138 (2009).

    Google Scholar 

  • 121.

    De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016). This study describes how evolutionary changes in early-arriving strains or species can limit colonization by later-arriving strains or species.

    PubMed 
    Article 

    Google Scholar 

  • 122.

    Madi, N., Vos, M., Murall, C. L., Legendre, P. & Shapiro, B. J. Does diversity beget diversity in microbiomes? eLife 9, e58999 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 123.

    Castledine, M., Padfield, D. & Buckling, A. Experimental (co)evolution in a multi-species microbial community results in local maladaptation. Ecol. Lett. 23, 1673–1681 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 124.

    von Gillhaussen, P. et al. Priority effects of time of arrival of plant functional groups override sowing interval or density effects: a grassland experiment. PLoS ONE 9, e86906 (2014).

    Article 
    CAS 

    Google Scholar 

  • 125.

    Ferrero, A. F. Effect of compaction simulating cattle trampling on soil physical characteristics in woodland. Soil. Tillage Res. 19, 319–329 (1991).

    Article 

    Google Scholar 

  • 126.

    Maron, J. L. & Jefferies, R. L. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80, 443–454 (1999).

    Article 

    Google Scholar 

  • 127.

    Eng, T. et al. Iron supplementation eliminates antagonistic interactions between root-associated bacteria. Front. Microbiol. 11, 1742 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 128.

    Gong, B.-Q. et al. Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phosphorylation in plants. Cell Host Microbe 26, 810–822 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 129.

    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 130.

    Lindemann, J. Competition between ice nucleation-active wild type and ice nucleation-deficient deletion mutant strains of Pseudomonas syringae and P. fluorescens biovar I and biological control of frost injury on strawberry blossoms. Phytopathology 77, 882 (1987). This study showed that the effects of delivery mode on the assembly of the cow rumen microbiome extend beyond initial exposure to different microbiota and they continue to affect bacterial species that arrive throughout the first few years of life.

    Article 

    Google Scholar 

  • 131.

    Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nat. Commun. 10, 512 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 132.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 133.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 134.

    Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 135.

    O’Hanlon, D. E., Moench, T. R. & Cone, R. A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 8, e80074 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 136.

    Pantel, J. H., Duvivier, C. & Meester, L. D. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol. Lett. 18, 992–1000 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 137.

    Fukami, T., Beaumont, H. J. E., Zhang, X.-X. & Rainey, P. B. Immigration history controls diversification in experimental adaptive radiation. Nature 446, 436–439 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 138.

    Rigby, M. C., Hechinger, R. F. & Stevens, L. Why should parasite resistance be costly? Trends Parasitol. 18, 116–120 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 139.

    Koskella, B. Phage-mediated selection on microbiota of a long-lived host. Curr. Biol. 23, 1256–1260 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System

    Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens