in

A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years

[adace-ad id="91168"]
  • 1.

    Solomon, S. et al. (eds.) IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

  • 2.

    Ganopolski, A. & Calov, R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim. Past 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011 (2011).

    Article 

    Google Scholar 

  • 3.

    Timmermann, A. et al. Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka. J. Climate 27, 1863–1875, https://doi.org/10.1175/JCLI-D-13-00311.1 (2013).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1 (2002).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978, https://doi.org/10.1002/joc.1276 (2005).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5, 180254, https://doi.org/10.1038/sdata.2018.254 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, https://doi.org/10.17161/bi.v10i0.4955 (2015).

  • 8.

    Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358, https://doi.org/10.1111/ecog.03031 (2017).

    Article 

    Google Scholar 

  • 9.

    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Sci Data 6, 1–16, https://doi.org/10.1038/s41597-019-0277-1 (2019).

    Article 

    Google Scholar 

  • 11.

    Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Scientific Data 7, 236, https://doi.org/10.1038/s41597-020-0552-1 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Climate of the Past 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020 (2020).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3 (2020).

    Article 

    Google Scholar 

  • 14.

    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series 691 (2012).

  • 15.

    Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. 108, 8171, https://doi.org/10.1029/2002JD002559 (2003).

    Article 

    Google Scholar 

  • 16.

    Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr. Quaternary Science Reviews 29, 43–55, https://doi.org/10.1016/j.quascirev.2009.10.011 (2010).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017 (2017).

    Article 

    Google Scholar 

  • 18.

    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 2014GL061957, https://doi.org/10.1002/2014GL061957 (2015).

    Article 

    Google Scholar 

  • 19.

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q (1991).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Clim. Past 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016 (2016).

    Article 

    Google Scholar 

  • 21.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_c (VM5a) model. Journal of Geophysical Research: Solid Earth 120, 450–487, https://doi.org/10.1002/2014JB011176 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NOAA NOAA Technical Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M (2009).

    Article 

    Google Scholar 

  • 23.

    Lehner, B. & Dőll, P. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028 (2004).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Araya-Melo, P. A., Crucifix, M. & Bounceur, N. Global sensitivity analysis of the Indian monsoon during the Pleistocene. Clim. Past 11, 45–61, https://doi.org/10.5194/cp-11-45-2015 (2015).

    Article 

    Google Scholar 

  • 25.

    Lord, N. S. et al. Emulation of long-term changes in global climate: application to the late Pliocene and future. Climate of the Past 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017 (2017).

    Article 

    Google Scholar 

  • 26.

    Hoyt, D. V. Percent of Possible Sunshine and the Total Cloud Cover. Monthly Weather Review 105, 648–652, 10.1175/1520-0493(1977)105<0648:POPSAT>2.0.CO;2 (1977).

  • 27.

    Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atm. Sci. 35, 2362–2367 (1978).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Krapp, M. Terrestrial climate of the last 800,000 years, Open Science Framework, https://doi.org/10.17605/OSF.IO/8N43X (2021).

  • 29.

    Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nature Communications 7, 11967, https://doi.org/10.1038/ncomms11967 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Schulzweida, U. CDO User Guide. Zenodo https://doi.org/10.5281/zenodo.3539275 (2019).

  • 31.

    Kőster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522, https://doi.org/10.1093/bioinformatics/bts480 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).

  • 33.

    Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9, 90–95, https://doi.org/10.1109/MCSE.2007.55 (2007).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Met Office. Cartopy: a cartographic python library with a Matplotlib interface (2010–2015).

  • 35.

    Flyamer, I. et al. Phlya/adjustText: 0.8 beta. Zenodo https://doi.org/10.5281/zenodo.3924114 (2020).

  • 36.

    Whitaker, J. et al. Unidata/netcdf4-python: version 1.5.5 release. Zenodo https://doi.org/10.5281/zenodo.4308773 (2020).

  • 37.

    Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Reback, J. et al. pandas-dev/pandas: Pandas 1.0.3. Zenodo https://doi.org/10.5281/zenodo.3715232 (2020).

  • 39.

    McKinney, W. Data Structures for Statistical Computing in Python. In Walt, S. v. d. & Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a (2010).

  • 40.

    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Walt, Svd et al. scikit-image: image processing in Python. PeerJ 2, e453, https://doi.org/10.7717/peerj.453 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    da Costa-Luis, C. et al. tqdm: A fast, Extensible Progress Bar for Python and CLI. Zenodo https://doi.org/10.5281/zenodo.4531988 (2021).

  • 43.

    Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 2015RG000482, https://doi.org/10.1002/2015RG000482 (2016).

  • 44.

    Schaefer, G. et al. Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific. Marine Micropaleontology 54, 191–212, https://doi.org/10.1016/j.marmicro.2004.12.001 (2005).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography and Paleoclimatology 4, 353–412, https://doi.org/10.1029/PA004i004p00353 (1989).

    Article 

    Google Scholar 

  • 46.

    Nürnberg, D., Müller, A. & Schneider, R. R. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K’, oxygen isotopes, and foraminiferal transfer function. Paleoceanography and Paleoclimatology 15, 124–134, https://doi.org/10.1029/1999PA000370 (2000).

    Article 

    Google Scholar 

  • 47.

    Horikawa, K., Murayama, M., Minagawa, M., Kato, Y. & Sagawa, T. Latitudinal and downcore (0–750 ka) changes in n-alkane chain lengths in the eastern equatorial Pacific. Quaternary Research 73, 573–582, https://doi.org/10.1016/j.yqres.2010.01.001 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Martrat, B. et al. Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin. Science 317, 502–507, https://doi.org/10.1126/science.1139994 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Rincón-Martínez, D. & Leduc, G. Sea surface temperature calculated from alkenones for the last 285 ka with high-reolution Holocene of sediment core MD02-2529, Panama Basin. PANGAEA https://doi.org/10.1594/PANGAEA.777473 (2012).

  • 50.

    Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F. & Naughton, F. Iberian Margin sea surface temperature during MIS 15 to 9 (580–300 ka): Glacial suborbital variability versus interglacial stability. Paleoceanography 26, PA1204, https://doi.org/10.1029/2010PA001927 (2011).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Hayward, B. W. et al. Planktic foraminifera-based sea-surface temperature record in the Tasman Sea and history of the Subtropical Front around New Zealand, over the last one million years. Marine Micropaleontology 82–83, 13–27, https://doi.org/10.1016/j.marmicro.2011.10.003 (2012).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Russon, T. et al. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophysical Research Letters 37, https://doi.org/10.1029/2010GL043191 (2010).

  • 53.

    Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710, https://doi.org/10.1038/385707a0 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Rostek, F. et al. Reconstructing sea surface temperature and salinity using $delta{18}O$ and alkenone records. Nature 364, 319, https://doi.org/10.1038/364319a0 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Caley, T. et al. High-latitude obliquity as a dominant forcing in the Agulhas current system. Clim. Past 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011 (2011).

    Article 

    Google Scholar 

  • 56.

    Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation. Science 301, 948–952, https://doi.org/10.1126/science.1084451 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Garidel–Thoron, T. d. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, https://doi.org/10.1029/2006PA001269 (2005).

  • 58.

    Liu, Z., Altabet, M. A. & Herbert, T. D. Glacial-interglacial modulation of eastern tropical North Pacific denitrification over the last 1.8-Myr. Geophysical Research Letters 32, https://doi.org/10.1029/2005GL024439 (2005).

  • 59.

    Yamamoto, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quaternary Science Reviews 26, 405–414, https://doi.org/10.1016/j.quascirev.2006.07.014 (2007).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Herbert, T. D. Collapse of the California Current During Glacial Maxima Linked to Climate Change on Land. Science 293, 71–76, https://doi.org/10.1126/science.1059209 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Schefuβ, E., Damsté, J. S. S. & Jansen, J. H. F. Forcing of tropical Atlantic sea surface temperatures during the mid-Pleistocene transition. Paleoceanography 19, https://doi.org/10.1029/2003PA000892 (2004).

  • 62.

    Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Pliocene–Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37, 871–874, https://doi.org/10.1130/G25733A.1 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 63.

    McClymont, E. L., Rosell-Melé, A., Giraudeau, J., Pierre, C. & Lloyd, J. M. Alkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic: Implications for the U37K’ index and South African climate. Quaternary Science Reviews 24, 1559–1572, https://doi.org/10.1016/j.quascirev.2004.06.024 (2005).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Martínez–Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, https://doi.org/10.1029/2008PA001657 (2009).

  • 65.

    Crundwell, M., Scott, G., Naish, T. & Carter, L. Glacial–interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 202–229, https://doi.org/10.1016/j.palaeo.2007.08.023 (2008).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Hayward, B. W. et al. The effect of submerged plateaux on Pleistocene gyral circulation and sea-surface temperatures in the Southwest Pacific. Global and Planetary Change 63, 309–316, https://doi.org/10.1016/j.gloplacha.2008.07.003 (2008).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth and Planetary Science Letters 309, 10–20, https://doi.org/10.1016/j.epsl.2011.04.016 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical Ocean Temperatures Over the Past 3.5 Million Years. Science 328, 1530–1534, https://doi.org/10.1126/science.1185435 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Nürnberg, D. & Groeneveld, J. Pleistocene variability of the Subtropical Convergence at East Tasman Plateau: Evidence from planktonic foraminiferal Mg/Ca (ODP Site 1172 A). Geochemistry, Geophysics, Geosystems 7, https://doi.org/10.1029/2005GC000984 (2006).

  • 70.

    Dyez, K. A., Ravelo, A. C. & Mix, A. C. Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature. Paleoceanography 31, 2015PA002873, https://doi.org/10.1002/2015PA002873 (2016).

    Article 

    Google Scholar 

  • 71.

    Alonso-Garcia, M. et al. Ocean circulation, ice sheet growth and interhemispheric coupling of millennial climate variability during the mid-Pleistocene (ca 800–400ka). Quaternary Science Reviews 30, 3234–3247, https://doi.org/10.1016/j.quascirev.2011.08.005 (2011).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Medina-Elizalde, M. & W Lea, D. The Mid-Pleistocene Transition in the Tropical Pacific. Science 310, 1009–12, https://doi.org/10.1126/science.1115933 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 73.

    Liu, Z. Pleistocene climate evolution in the eastern Pacific and implications for the orbital theory of climate change. Ph.D., Brown University, United States – Rhode Island (2004).

  • 74.

    Dyez, K. A. & Ravelo, A. C. Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geological Society of America 41, 23–26, https://doi.org/10.1130/G33425.1 (2013).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar Link to the Emergence of the Modern Equatorial Pacific Cold Tongue. Science 328, 1550–1553, https://doi.org/10.1126/science.1184480 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 76.

    Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218, https://doi.org/10.1029/2008PA001669 (2009).

    ADS 
    Article 

    Google Scholar 

  • 77.

    Schmidt, M. W., Vautravers, M. J. & Spero, H. J. Western Caribbean sea surface temperatures during the late Quaternary. Geochemistry Geophysics Geosystems 7, https://doi.org/10.1029/2005GC000957 (2006).

  • 78.

    Ho, S. L. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, https://doi.org/10.1029/2012PA002317 (2012).

  • 79.

    Tierney, J. E., deMenocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. The Geological Society of America 45, 1023–1026, https://doi.org/10.1130/G39457.1 (2017).

    Article 

    Google Scholar 

  • 80.

    Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 360, 877–881, https://doi.org/10.1126/science.aam5825 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 81.

    Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Scientific Reports 6, 24374, https://doi.org/10.1038/srep24374 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Guo, Z. T., Berger, A., Yin, Q. Z. & Qin, L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim. Past 5, 21–31, https://doi.org/10.5194/cp-5-21-2009 (2009).

    Article 

    Google Scholar 

  • 83.

    Carolin, S. A. et al. Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6. Earth and Planetary Science Letters 439, 182–193, https://doi.org/10.1016/j.epsl.2016.01.028 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 84.

    Waldmann, N., Torfstein, A. & Stein, M. Northward intrusions of low- and mid-latitude storms across the Saharo-Arabian belt during past interglacials. Geology 38, 567–570, https://doi.org/10.1130/G30654.1 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 85.

    Landwehr, J. M., Sharp, W. D., Coplen, T. B., Ludwig, K. R. & Winograd, I. J. The Chronology for the δ18O Record from Devils Hole, Nevada, Extended Into the Mid-Holocene. Tech. Rep., US Geological Survey (2011).

  • 86.

    Stoykova, D. A., Shopov, Y. Y., Garbeva, D., Tsankov, L. T. & Yonge, C. J. Origin of the climatic cycles from orbital to sub-annual scales. Journal of Atmospheric and Solar-Terrestrial Physics 70, 293–302, https://doi.org/10.1016/j.jastp.2007.08.018 (2008).

    ADS 
    Article 

    Google Scholar 

  • 87.

    Jouzel, J. et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 317, 793–796, https://doi.org/10.1126/science.1141038 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 88.

    Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters 39, https://doi.org/10.1029/2011GL050202 (2012).

  • 89.

    Prokopenko, A. A., Hinnov, L. A., Williams, D. F. & Kuzmin, M. I. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews 25, 3431–3457, https://doi.org/10.1016/j.quascirev.2006.10.002 (2006).

    ADS 
    Article 

    Google Scholar 

  • 90.

    Melles, M. et al. 2.8 Million Years of Arctic Climate Change from Lake El’gygytgyn, NE Russia. Science 337, 315–320, https://doi.org/10.1126/science.1222135 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 91.

    Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29, 2647–2662, https://doi.org/10.1016/j.quascirev.2010.06.014 (2010).

    ADS 
    Article 

    Google Scholar 

  • 92.

    Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 3181–3199, https://doi.org/10.1016/S0016-7037(02)01031-1 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 93.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646, https://doi.org/10.1038/nature18591 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 94.

    Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25, 3416–3430, https://doi.org/10.1016/j.quascirev.2006.09.002 (2006).

    ADS 
    Article 

    Google Scholar 

  • 95.

    Vaks, A. et al. Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384–399, https://doi.org/10.1016/j.epsl.2006.07.009 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 96.

    K. Thomas, E. et al. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters 455, https://doi.org/10.1016/j.epsl.2016.09.044 (2016).

  • 97.

    Hao, Q. et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393–396, https://doi.org/10.1038/nature11493 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System

    Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens