in

Morphological variability of Carex buekii (Cyperaceae) as a function of soil conditions: a case study of the Central European populations

  • Mal, T. K. & Lovett-Doust, J. Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. Am. J. Bot. 92, 819–825 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Wang, S., Li, L. & Zhou, D.-W. Morphological plasticity in response to population density varies with soil conditions and growth stage in Abutilon theophrasti (Malvaceae). Plant Ecol. 218, 785–797 (2017).

    Article 

    Google Scholar 

  • Eid, E. M., Shaltout, K. H., Al-Sodany, Y. M., Haroun, S. A. & Jensen, K. A comparison of the functional traits of Phragmites australis in Lake Burullus (a Ramsar site in Egypt): Young vs. old populations over the nutrient availability gradient. Ecol. Eng. 166, 106244 (2021).

    Article 

    Google Scholar 

  • Hassan, M. O. et al. Habitat variations affect morphological, reproductive and some metabolic traits of Mediterranean Centaurea glomerata Vahl populations. Heliyon 6, e04173 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Więcław, H. Within-species variation among populations of the Carex flava complex as a function of habitat conditions. Plant Ecol. Divers. 10, 443–451 (2017).

    Article 

    Google Scholar 

  • MacLeod, N. Phylogenetic signals in morphometric data. In Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 100–138 (Taylor & Francis, Routledge, 2002).

    Chapter 

    Google Scholar 

  • Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 208747 (2014).

    Google Scholar 

  • Koopman, J. et al. Global distribution of Carex buekii (Cyperaceae) reappraised. Phytotaxa 358, 139–161 (2018).

    Article 

    Google Scholar 

  • Egorova, T. V. The Sedges (Carex L.) of Russia and Adjacent States (Within the Limits of the Former USSR) (St.-Petersburg State Chemical-Pharmaceutical Academy, St.-Petersburg, 1999).

    Google Scholar 

  • Burkart, M. River corridor plants (Stromtalpflanzen) in Central European lowland: A review of a poorly understood plant distribution pattern: River corridor plants. Glob. Ecol. Biogeogr. 10, 449–468 (2001).

    Article 

    Google Scholar 

  • Więcław, H. et al. Ecology, threats and conservation status of Carex buekii (Cyperaceae) in Central Europe. Sci. Rep. 9, 11162 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nobis, A. & Skórka, P. River corridor plants revisited: What drives their unique distribution patterns?. Plant Biosyst. 150, 244–253 (2016).

    Article 

    Google Scholar 

  • Spink, A., Sparks, R. E., Van Oorschot, M. & Verhoeven, J. T. A. Nutrient dynamics of large river floodplains. Regul. Rivers. Res. Manag. 14, 203–216 (1998).

    Article 

    Google Scholar 

  • Myśliwy, M. Diversity and environmental variability of riparian tall herb fringe communities of the order Convolvuletalia sepium in Polish river valleys. Monographiae Botaniceae 108, 1–129 (2019).

    Article 

    Google Scholar 

  • Fischer, W. Die Stromtalpflanzen Brandenburgs. Unter Havel. Naturkundliche Berichte 5, 4–13 (1996).

    Google Scholar 

  • Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (assessed: 08 March 2022).

  • Methods of Soil Analysis: Part 3 Chemical Methods. (Soil Science Society of America, American Society of Agronomy, 1996). https://doi.org/10.2136/sssabookser5.3.

  • StatSoft Inc. Electronic Statistics Textbook. (Tulsa, OK: StatSoft, 2013).

  • ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). (Ithaca NY, 2002).

  • Xu, X. et al. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 11, 904 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sardans, J. & Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 10, 419 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Broadley, M. R. et al. Phylogenetic variation in the shoot mineral concentration of angiosperms. J. Exp. Bot. 55, 321–336 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Watanabe, T. et al. Evolutionary control of leaf element composition in plants. New Phytol. 174, 516–523 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Konings, H., Koot, E. & Wolf, A. T. Growth characteristics, nutrient allocation and photosynthesis of Carex species from floating fens. Oecologia 80, 111–121 (1989).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Busch, J. Characteristic values of key ecophysiological parameters in the genus Carex. Flora 196, 405–430 (2001).

    Article 

    Google Scholar 

  • Zhang, D. et al. Effect of hydrological fluctuation on nutrient stoichiometry and trade-offs of Carex schmidtii. Ecol. Ind. 120, 106924 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, D. et al. Growth and physiological responses of Carex schmidtii to water-level fluctuation. Hydrobiologia 847(3), 967–981 (2020).

    CAS 
    Article 

    Google Scholar 

  • Yan, H. et al. Growth and physiological responses to water depths in Carex schmidtii Meinsh. PLoS ONE 10(5), e0128176 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Luo, W. & Xie, Y. Growth and morphological responses to water level and nutrient supply in three emergent macrophyte species. Hydrobiologia 624(1), 151–160 (2009).

    CAS 
    Article 

    Google Scholar 

  • Lu, Y. Growth and morphological responses to water level variations in two Carex species from Sanjiang Plain, China. Afr. J. Agric. Res. 6, 28–34 (2011).

    Google Scholar 

  • Cao, Y. et al. Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: A meta-analysis. CATENA 215, 106287 (2022).

    CAS 
    Article 

    Google Scholar 

  • Sardans, T., Peñuelas, T., Prieto, P. & Estiarte, M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant Soil 306, 261–271 (2007).

    Article 
    CAS 

    Google Scholar 

  • Flórez-Flórez, C. P., León-Peláez, J. D., Osorio-Vega, N. W. & Restrepo-Llano, M. F. Nutrient dynamics in forest plantations of Azadirachta indica (Meliaceae) established for restoration of degraded lands in Colombia. Rev. Biol. Trop. 61, 515–529 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Jordan-Meille, L. & Pellerin, S. Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265, 75–92 (2004).

    CAS 
    Article 

    Google Scholar 

  • Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S. & Dingkuhn, M. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum L. Environ. Exp. Bot. 67, 451–459 (2010).

    CAS 
    Article 

    Google Scholar 

  • Bailey, J. S. & Laidlaw, A. S. Growth and development of white clover (Trifolium repens L.) as influenced by P and K nutrition. Ann. Bot. 81, 783–786 (1998).

    Article 

    Google Scholar 

  • White, P. Relationship between the development and growth of rye (Secale cereale L.) and the potassium concentration in solution. Ann. Bot. 72, 349–358 (1993).

    CAS 
    Article 

    Google Scholar 

  • Pujos, A. & Morard, P. Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 189, 189–196 (1997).

    CAS 
    Article 

    Google Scholar 

  • Osakabe, Y. et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25, 609–624 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lebaudy, A. et al. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc. Natl. Acad. Sci. 105, 5271–5276 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tränkner, M., Tavakol, E. & Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plantarum 163, 414–431 (2018).

    Article 
    CAS 

    Google Scholar 

  • Du, Q. et al. Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agric. Sci. 8, 1263–1277 (2017).

    CAS 

    Google Scholar 

  • Hu, W., Coomer, T. D., Loka, D. A., Oosterhuis, D. M. & Zhou, Z. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiol. Biochem. 115, 408–417 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reisch, C., Meier, S., Schmid, C. & Bartelheimer, M. Clonal diversity and genetic variation of the sedge Carex nigra in an alpine fen depend on soil nutrients. PeerJ 8, e8887 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lenssen, J. P. M., Menting, F. B. J. & Van der Putten, W. H. Plant responses to simultaneous stress of waterlogging and shade: Amplified or hierarchical effects?. New Phytol. 157, 281–290 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Z. G. & Li, Z. Q. Effects of different grazing regimes on the morphological traits of Carex duriuscula on the Inner Mongolia steppe, China. N. Z. J. Agric. Res. 53(1), 5–12 (2010).

    Article 

    Google Scholar 

  • Więcław, H. et al. Morphological variability and genetic diversity in Carex buxbaumii and Carex hartmaniorum (Cyperaceae) populations. PeerJ 9, e11372 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Więcław, H., Kurnicki, B., Bihun, M., Białecka, B. & Koopman, J. Carex section Racemosae (Cyperaceae) in Europe: Morphological diversity, taxonomy and phylogenetic relationships. Bot. J. Linn. Soc. 183, 124–145 (2017).

    Google Scholar 

  • Jiménez-Mejías, P., Benítez-Benítez, C., Fernández-Mazuecos, M. & Martín-Bravo, S. Cut from the same cloth: The convergent evolution of dwarf morphotypes of the Carex flava group (Cyperaceae) in Circum-Mediterranean mountains. PLoS ONE 12(12), e0189769 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Więcław, H. Carex flava agg. (section Ceratocystis, Cyperaceae) in Poland: taxonomy, morphological variation, and soil conditions. Biodivers. Res. Conserv. 33, 3–51 (2014).

    Article 

    Google Scholar 

  • Kalela, A. Systematische und Pflanzengeographische Studien an der Carex-Subsektion Alpinae Kalela. Annales Botanici Societatis Zoologicae-Botanicae Fennicae 19, 1–218 (1944).

    Google Scholar 

  • Wallnöfer, B. Uber Carex melanostachya, C. norvegica, C. cespitosa und C. hartmanii in Südtirol. Gredleriana 4, 413–418 (2004).

    Google Scholar 

  • Gebauer, S., Röser, M. & Hoffmann, M. H. Molecular phylogeny of the species-rich Carex sect. Racemosae (Cyperaceae) based on four nuclear and chloroplast markers. Syst. Bot. 40, 433–447 (2015).

    Article 

    Google Scholar 

  • Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa in Eurasian Carex (Section Phaestoglochin, Cyperaceae). Syst. Bot. 33, 237–250 (2008).

    Article 

    Google Scholar 

  • Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa of the Carex divulsa aggregate in Eurasia (section Phaestoglochin, Cyperaceae). Botan. J. Linn. Soc. 156, 385–409 (2008).

    Article 

    Google Scholar 

  • Jiménez-Mejías, P. & Luceño, M. Cyperaceae. in Euro+Med. etc. Plantbase – the information resource for Euro-Mediterranean plant diversity. Available from: http://www.emplantbase.org/home.html (accessed 07 January 2022). (eds Greuter, W. & Raab-Straube, E. von) (2011).

  • Míguez, M., Martín-Bravo, S. & Jiménez-Mejías, P. Reconciling morphology and phylogeny allows an integrative taxonomic revision of the giant sedges of Carex section Rhynchocystis (Cyperaceae). Botan. J. Linn. Soc. 188, 34–58 (2018).

    Article 

    Google Scholar 

  • Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Preslia 93, 255–304 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis

    Pursuing progress at the nanoscale