in

Periodically taken photographs reveal the effect of pollinator insects on seed set in lotus flowers

[adace-ad id="91168"]
  • Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology 2nd edn. (Pergamon Press, 1971).

    Google Scholar 

  • Crepet, W. L. The role of insect pollination in the evolution of the angiosperms. In Pollination Biology (ed. Real, L.) 29–50 (Academic Press, 1983).

    Chapter 

    Google Scholar 

  • Dressler, R. L. Biology of the orchid bees (Euglossini). Annu. Rev. Ecol. Syst. 13, 373–394 (1982).

    Article 

    Google Scholar 

  • Ollerton, J. et al. A global test of the pollination syndrome hypothesis. Ann. Bot. 103, 1471–1480 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • IPBES. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (IPBES Secretariat, 2016).

  • Kearns, C. A., Inouye, D. W. & Waser, N. M. Endangered mutualisms : The conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).

    Article 

    Google Scholar 

  • Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).

    Article 

    Google Scholar 

  • Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: Ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292 (2010).

    Article 

    Google Scholar 

  • Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: The ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).

    PubMed 
    Article 

    Google Scholar 

  • McCall, A. C. & Irwin, R. E. Florivory: The intersection of pollination and herbivory. Ecol. Lett. 9, 1351–1365 (2006).

    PubMed 
    Article 

    Google Scholar 

  • King, C., Ballantyne, G. & Willmer, P. G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818 (2013).

    Article 

    Google Scholar 

  • Komamura, R., Koyama, K., Yamauchi, T., Konno, Y. & Gu, L. Pollination contribution differs among insects visiting cardiocrinum cordatum flowers. Forests 12, 452 (2021).

    Article 

    Google Scholar 

  • Aizen, M. A. Flower sex ratio, pollinator abundance, and the seasonal pollination dynamics of a protandrous plant. Ecology 82, 127–144 (2001).

    Article 

    Google Scholar 

  • Forrest, J. R. K., Ogilvie, J. E., Gorischek, A. M. & Thomson, J. D. Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae). Ann. Bot. 108, 1–12 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Burrill, R. M. & Dietz, A. The response of honey bees to variations in solar radiation and temperature. Apidologie 12, 319–328 (1981).

    Article 

    Google Scholar 

  • Corbet, S. A. et al. Temperature and the pollinating activity of social bees. Ecol. Entomol. 18, 17–30 (1993).

    Article 

    Google Scholar 

  • Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering Mediterranean shrub. Oikos 58, 277–288 (1990).

    Article 

    Google Scholar 

  • Zoller, L., Bennett, J. M. & Knight, T. M. Diel-scale temporal dynamics in the abundance and composition of pollinators in the Arctic summer. Sci. Rep. 10, 21187 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kirk, W. D. J., Ali, M. & Breadmore, K. N. The effects of pollen beetles on the foraging behaviour of honey bees. J. Apic. Res. 34, 15–22 (1995).

    Article 

    Google Scholar 

  • Tan, K. et al. Fearful foragers: Honey bees tune colony and individual foraging to multi-predator presence and food quality. PLoS ONE 8, e75841 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baldock, K. C. R., Memmott, J., Carlos Ruiz-Guajardo, J., Roze, D. & Stone, G. N. Daily temporal structure in African savanna flower visitation networks and consequences for network sampling. Ecology 92, 687–698 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Edwards, J., Smith, G. P. & McEntee, M. H. F. Long-term time-lapse video provides near complete records of floral visitation. J. Pollinat. Ecol. 16, 91–100 (2015).

    CAS 
    Article 

    Google Scholar 

  • Knop, E. et al. Rush hours in flower visitors over a day–night cycle. Insect Conserv. Divers. 11, 267–275 (2018).

    Article 

    Google Scholar 

  • Herrera, J. Pollination relationships in southern Spanish Mediterranean shrublands. J. Ecol. 76, 274–287 (1988).

    Article 

    Google Scholar 

  • Eckhart, V. M. Spatio-temporal variation in abundance and variation in foraging behavior of the pollinators of gynodioecious Phacelia linearis (Hydrophyllaceae). Oikos 64, 573–586 (1992).

    Article 

    Google Scholar 

  • Nakano, C. & Washitani, I. Variability and specialization of plant-pollinator systems in a northern maritime grassland. Ecol. Res. 18, 221–246 (2003).

    Article 

    Google Scholar 

  • Moeller, D. A. Pollinator community structure and sources of spatial variation in plant-pollinator interactions in Clarkia xantiana ssp. xantiana. Oecologia 142, 28–37 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Lortie, C. J., Budden, A. E. & Reid, A. M. From birds to bees: Applying video observation techniques to invertebrate pollinators. J. Pollinat. Ecol. 6, 125–128 (2012).

    Google Scholar 

  • Pegoraro, L., Hidalgo, O., Leitch, I. J., Pellicer, J. & Barlow, S. E. Automated video monitoring of insect pollinators in the field. Emerg. Top. Life Sci. 4, 87–97 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Steen, R. & Aase, A. L. T. O. Portobale digital video surveillance system for monitoring flower-visiting bumblebees. J. Pollinat. Ecol. 5, 90–94 (2011).

    Article 

    Google Scholar 

  • Sakamoto, R. L., Morinaga, S. I., Ito, M. & Kawakubo, N. Fine-scale flower-visiting behavior revealed by using a high-speed camera. Behav. Ecol. Sociobiol. 66, 669–674 (2012).

    Article 

    Google Scholar 

  • Georgian, E., Fang, Z., Emshwiller, E. & Pidgeon, A. The pollination ecology of Rhododendron floccigerum Franchet (Ericaceae) in Weixi, Yunnan Province, China. J. Pollinat. Ecol. 16, 72–81 (2015).

    Article 

    Google Scholar 

  • Suetsugu, K., Nakahama, N., Ito, A. & Isagi, Y. Time-lapse photography reveals the occurrence of unexpected bee-pollination in Calanthe izuinsularis, an endangered orchid endemic to the Izu archipelago. J. Nat. Hist. 51, 783–792 (2017).

    Article 

    Google Scholar 

  • Steen, R. Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol. Evol. 8, 203–213 (2017).

    Article 

    Google Scholar 

  • Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).

    Article 

    Google Scholar 

  • Edwards, J., Griffin, A. J. & Knoedler, M. R. Simultaneous recordings of insect visitors to flowers show spatial and temporal heterogeneity. Ann. Entomol. Soc. Am. 112, 93–98 (2019).

    Article 

    Google Scholar 

  • Droissart, V. et al. PICT: A low-cost, modular, open-source camera trap system to study plant–insect interactions. Methods Ecol. Evol. 12, 1389–1396 (2021).

    Article 

    Google Scholar 

  • Li, Y. et al. Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo) and its bearing on the paleoclimatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 284–293 (2014).

    Article 

    Google Scholar 

  • Li, J. & Huang, S. Effective pollinators of Asian sacred lotus (Nelumbo nucifera): Contemporary pollinators may not reflect the historical pollination syndrome. Ann. Bot. 104, 845–851 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, T. D. Patterns of fruit and seed production. In Plant Reproductive Ecology: Patterns and Strategies (eds Doust, J. L. & Doust, L. L.) 179–202 (Oxford University Press, 1988).

    Google Scholar 

  • Moro, C. F., Yonekura, M., Kouzuma, Y., Agrawal, G. K. & Rakwal, R. Lotus—a source of food and medicine: Current status and future perspectives in context of the seed proteomics. Int. J. Life Sci. 7, 1–5 (2013).

    CAS 
    Article 

    Google Scholar 

  • Zhu, M., Liu, T. & Guo, M. Current advances in the metabolomics study on lotus seeds. Front. Plant Sci. 7, 891 (2017).

    Google Scholar 

  • Guo, H. B. Cultivation of lotus (Nelumbo nucifera Gaertn. Ssp. nucifera) and its utilization in China. Genet. Resour. Crop Evol. 56, 323–330 (2009).

    Article 

    Google Scholar 

  • Vogel, S. & Hadacek, F. Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) III. An ecological reappraisal of floral organs. Plant Syst. Evol. 249, 173–189 (2004).

    Article 

    Google Scholar 

  • Seymour, R. S. & Schultze-Motel, P. Thermoregulating lotus flowers. Nature 383, 305 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dieringer, G., Leticia Cabrera, R. & Mottaleb, M. Ecological relationship between floral thermogenesis and pollination in Nelumbo lutea (Nelumbonaceae). Am. J. Bot. 101, 357–364 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 
    Article 

    Google Scholar 

  • R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).

    Article 

    Google Scholar 

  • Ne’Eman, G., Jürgens, A., Newstrom-Lloyd, L., Potts, S. G. & Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 85, 435–451 (2010).

    PubMed 

    Google Scholar 

  • Kearns, C. A. & Inouye, D. W. Techniques for Pollination Biologists (University Press of Colorado, 1993).

    Google Scholar 

  • Delaplane, K. S., Mayer, D. R. & Mayer, D. F. Crop Pollination by Bees (CABI Publishing, 2000).

    Google Scholar 

  • Oldroyd, B. P. & Nanork, P. Conservation of Asian honey bees. Apidologie 40, 296–312 (2009).

    Article 

    Google Scholar 

  • Abou-Shaara, H. F. The foraging behaviour of honey bees Apis mellifera: A review. Vet. Med. (Praha) 59, 1–10 (2014).

    Article 

    Google Scholar 

  • Reyes-Carrillo, J. L., Eischen, F. A., Cano-Rios, P., Rodríguez Martínez, R. & Nava Camberos, U. Pollen collection and honey bee forager distribution in cantaloupe. Acta Zool. Mex. 23, 29–36 (2007).

    Google Scholar 

  • Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: Circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160256 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lawson, D. A. & Rands, S. A. The effects of rainfall on plant–pollinator interactions. Arthropod. Plant. Interact. 13, 561–569 (2019).

    Article 

    Google Scholar 

  • Antiqueira, P. A. P. et al. Precipitation and predation risk alter the diversity and behavior of pollinators and reduce plant fitness. Oecologia 192, 745–753 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Matsuura, M. Comparative biology of the five Japanese species of the genus Vespa (Hymenoptera, Vespidae). Bull. Fac. Agric. Mie Univ. 69, 1–131 (1984).

    Google Scholar 

  • Dukas, R. Effects of perceived danger on flower choice by bees. Ecol. Lett. 4, 327–333 (2001).

    Article 

    Google Scholar 

  • Romero, G. Q., Antiqueira, P. A. P. & Koricheva, J. A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6, e20689 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kluser, S. & Peduzzi, P. Global pollinator decline : A literature review. UNEP/GRID-Europe (2007).

  • Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).

    Article 

    Google Scholar 

  • Paudel, Y. P., Mackereth, R., Hanley, R. & Qin, W. Honey bees (Apis mellifera L.) and pollination issues: current status, impacts and potential drivers of decline. J. Agric. Sci. 7, 93–109 (2015).

    Google Scholar 

  • Theisen-Jones, H. & Bienefeld, K. The Asian honey bee (Apis cerana) is significantly in decline. Bee World 93, 90–97 (2016).

    Article 

    Google Scholar 

  • Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. U.S.A. 108, 662–667 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wood, T. J. et al. Managed honey bees as a radar for wild bee decline?. Apidologie 51, 1100–1116 (2020).

    Article 

    Google Scholar 

  • Thapa, R. Honeybees and other insect pollinators of cultivated plants: A review. J. Inst. Agric. Anim. Sci. 27, 1–23 (2006).

    Article 

    Google Scholar 

  • Nicholls, C. I. & Altieri, M. A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 33, 257–274 (2013).

    Article 

    Google Scholar 

  • Rader, R., Howlett, B. G., Cunningham, S. A., Westcott, D. A. & Edwards, W. Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops?. J. Appl. Ecol. 49, 126–134 (2012).

    Article 

    Google Scholar 

  • Nikkeshi, A., Inoue, H., Arai, T., Kishi, S. & Kamo, T. The bumblebee Bombus ardens ardens (Hymenoptera: Apidae) is the most important pollinator of Oriental persimmon, Diospyros kaki (Ericales: Ebenaceae), in Hiroshima, Japan. Appl. Entomol. Zool. 54, 409–419 (2019).

    Article 

    Google Scholar 

  • Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4, 19–32 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gilpin, A. M., Denham, A. J. & Ayre, D. J. The use of digital video recorders in pollination biology. Ecol. Entomol. 42, 383–388 (2017).

    Article 

    Google Scholar 

  • Barlow, S. E. & O’Neill, M. A. Technological advances in field studies of pollinator ecology and the future of e-ecology. Curr. Opin. Insect Sci. 38, 15–25 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Suzuki-Ohno, Y. et al. Deep learning increases the availability of organism photographs taken by citizens in citizen science programs. Sci. Rep. 12, 1–10 (2022).

    Article 
    CAS 

    Google Scholar 

  • Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. U.S.A. 118, 1–10 (2021).

    Google Scholar 


  • Source: Ecology - nature.com

    Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis

    Pursuing progress at the nanoscale