in

Disease state associated with chronic toe lesions in hellbenders may alter anti-chytrid skin defenses

  • IUCN. The IUCN red list of threatened species. Version 2022-1. https://www.iucnredlist.org. Accessed on 17 September 2022. (2022).

  • O’Hanlon, S., Rieux, A., Farrer, R. A. & Rosa, G. M. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).

    ADS 

    Google Scholar 

  • Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    ADS 
    CAS 

    Google Scholar 

  • La Marca, E. et al. Catastrophic population declines and extinctions in neotropical Harlequin frogs (Bufonidae: Atelopus). Biotropica 37, 190–201 (2005).

    Google Scholar 

  • Rovito, S. M., Parra-Olea, G., Vasquez-Almazan, C. R., Papenfuss, T. J. & Wake, D. B. Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proc. Natl. Acad. Sci. U.S.A. 106, 3231–3236 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Stegen, G. et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544, 353–356 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Martel, A. et al. Recent introduction of a chytrid fungus endangers western palearctic salamanders. Science 346, 630–631 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Green, D. E., Converse, K. A. & Schrader, A. K. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. Annu. NY Acad. Sci. 969, 323–339 (2002).

    ADS 

    Google Scholar 

  • Duffus, A. L. J. & Cunningham, A. A. Major disease threats to European amphibians. Herpetol. J. 20, 117–127 (2010).

    Google Scholar 

  • Teacher, A. G. F., Cunningham, A. A. & Garner, T. W. J. Assessing the long-term impact of Ranavirus infection in wild common frog populations. Anim. Conserv. 13, 514–522 (2010).

    Google Scholar 

  • Chinchar, V. G. & Waltzek, T. B. Ranaviruses: Not just for frogs. PLoS Pathog. 10, e1003850 (2014).

    Google Scholar 

  • Nickerson, M. A. & Mays, C. E. The hellbenders: North American giant salamanders. Milwaukee Public Mus. Publ. Biol. Geol. 1, 1–106 (1973).

    Google Scholar 

  • Wheeler, B. A., Prosen, E., Mathis, A. & Wilkinson, R. F. Population declines of a long- lived salamander: A 20+ year study of hellbenders, Cryptobranchus alleganiensis. Biol. Conserv. 109, 151–156 (2003).

    Google Scholar 

  • Freake, M. J. & DePerno, C. S. Importance of demographic surveys and public lands for the conservation of eastern hellbenders Cryptobranchus alleganiensis alleganiensis in southeast USA. PLoS ONE 12, e0179153 (2017).

    Google Scholar 

  • USFWS. Endangered and threatened wildlife and plants; Endangered status for the Ozark Hellbender salamander. 50 CFR Part 23. Fed. Reg. 76, 61956–61978 (2011).

    Google Scholar 

  • USFWS. Species status assessment report for the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis). p 104 (2018).

  • Pugh, M., Hutchins, M., Madritch, M., Siefferman, L. & Gangloff, M. M. Land-use and local physical and chemical habitat parameters predict site occupancy by hellbender salamanders. Hydrobiologia 770, 105–116 (2015).

    Google Scholar 

  • Bodinof-Jachowski, C. M. & Hopkins, W. A. Loss of catchment-wide riparian forest cover is associated with reduced recruitment in a long-lived amphibian. Biol. Cons. 202, 215–227 (2018).

    Google Scholar 

  • Bodinof, C. M., Briggler, J. T. & Duncan, M. C. Historic occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in hellbender Cryptobranchus alleganiensis populations from Missouri. Dis. Aquat. Org. 96, 1–7 (2011).

    Google Scholar 

  • Hardman, R. H. et al. Geographic and individual determinants of important amphibian pathogens in hellbenders (Cryptobranchus alleganiensis) in Tennessee and Arkansas, USA. J. Wildl. Dis. 56, 803–814 (2020).

    CAS 

    Google Scholar 

  • Bales, E. K. et al. Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders. PLoS ONE 10, e0116405 (2015).

    Google Scholar 

  • Souza, M. J., Gray, M. J., Colclough, P. & Miller, D. L. Prevalence of infection by Batrachochytrium dendrobatidis and ranavirus in eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) in eastern Tennessee. J. Wildl. Dis. 48, 560–566 (2012).

    Google Scholar 

  • Gonynor, J. L., Yabsley, M. J. & Jensen, J. B. A preliminary survey of Batrachochytrium dendrobatidis exposure in hellbenders from a stream in Georgia, USA. Herpetol. Rev. 42, 58–59 (2011).

    Google Scholar 

  • Briggler, J. T., Larson, K. A. & Irwin, K. J. Presence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) on hellbenders (Cryptobranchus alleganiensis) in the Ozark highlands. Herpetol. Rev. 39, 443–444 (2008).

    Google Scholar 

  • Dusick, A., Flatland, B., Craig, L. & Ferguson, S. What is your diagnosis? Skin scraping from a hellbender. Vet. Clin. Pathol. 46, 183–184 (2017).

    Google Scholar 

  • Dean, N., Ossiboff, R., Bunting, E., Schuler, K., Rothrock, A., & Roblee, K. The eastern hellbender and Batrachochytrium dendrobatidis (Bd) in western New York. In Proceedings of the 65th International Conference of the Wildlife Disease Association p. 151 (2016).

  • Cusaac, J. P. et al. Emerging pathogens and a current-use pesticide: potential impacts on eastern hellbenders. J. Aquat. Anim. Health 33, 24–32 (2021).

    CAS 

    Google Scholar 

  • Geng, Y. et al. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus). J. Comp. Pathol. 145, 96–102 (2011).

    Google Scholar 

  • Hardman, R. H., Irwin, K. J., Sutton, W. B. & Miller, D. L. Evaluation of severity and factors contributing to foot lesions in endangered Ozark Hellbenders, Cryptobranchus alleganiensis bishopi. Front. Vet. Sci. 7, 1–10 (2020).

    Google Scholar 

  • Hernández-Gómez, O., Kimble, S. J. A., Briggler, J. T. & Williams, R. T. Characterization of the cutaneous bacterial communities of two giant salamander subspecies. Microb. Ecol. 73, 445–454 (2017).

    Google Scholar 

  • Miller, B. T. & Miller, J. L. Prevalence of physical abnormalities in eastern hellbender (Cryptobranchus alleganiensis alleganiensis) populations of middle Tennessee. Southeast. Nat. 4, 513–520 (2005).

    Google Scholar 

  • Shoemaker, V. H. & Nagy, K. Osmoregulation in amphibians and reptiles. Annu. Rev. Physiol. 39, 449–471 (1977).

    CAS 

    Google Scholar 

  • Guimond, R. W. & Hutchison, V. H. Aquatic respiration: An unusual strategy in the hellbender Cryptobranchus alleganiensis alleganiensis (Daudin). Science 182, 1263–1265 (1973).

    ADS 
    CAS 

    Google Scholar 

  • Rollins-Smith, L. A. & Conlon, J. M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 29, 589–598 (2005).

    CAS 

    Google Scholar 

  • Brogden, K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria. Nat. Rev. Microbiol. 3, 238–250 (2005).

    CAS 

    Google Scholar 

  • Xu, X. & Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev. 115, 1760–1846 (2015).

    CAS 

    Google Scholar 

  • Woodhams, D. C. et al. Population trends associated with antimicrobial peptide defenses against chytridiomycosis in Australian frogs. Oecologica 146, 531–540 (2006).

    ADS 

    Google Scholar 

  • Rollins-Smith, L. A. et al. Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev. Comp. Immunol. 30, 831–842 (2006).

    CAS 

    Google Scholar 

  • Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Vet. Res. 46, 137 (2015).

    Google Scholar 

  • Demori, I. et al. Peptides for skin protection and healing in amphibians. Molecules 24, 347 (2019).

    Google Scholar 

  • Wu, J. et al. A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem. J. 475, 2785–2799 (2018).

    CAS 

    Google Scholar 

  • Tennessen, J. A. et al. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev. Comp. Immunol. 33, 1247–1257 (2009).

    CAS 

    Google Scholar 

  • Tatiersky, L. et al. Effect of glucocorticoids on expression of cutaneous antimicrobial peptides in northern leopard frogs (Lithobates pipiens). BMC Vet. Res. 11, 191 (2015).

    Google Scholar 

  • Pereira, K. E. & Woodley, S. K. Skin defenses of North American salamanders against a deadly salamander fungus. Anim. Conserv. 24, 552–567 (2021).

    Google Scholar 

  • Pereira, K. E. et al. Skin glands of an aquatic salamander vary in size and distribution and release antimicrobial secretions effective against chytrid fungal pathogens. J. Exp. Biol. 221, jeb183707 (2018).

    Google Scholar 

  • Smith, H. K. et al. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS ONE 13, e0199295 (2018).

    Google Scholar 

  • Meng, P. et al. The first salamander defensin antimicrobial peptide. PLoS ONE 8, e83044 (2013).

    ADS 

    Google Scholar 

  • Sheafor, B., Davidson, E. W., Parr, L. & Rollins-Smith, L. A. Antimicrobial peptide defenses in the salamander, Ambystoma tigrinum, against emerging amphibian pathogens. J. Wildl. Dis. 44, 226–236 (2008).

    CAS 

    Google Scholar 

  • Fredericks, L. P. & Dankert, J. R. Antibacterial and hemolytic activity of the skin of the terrestrial salamander, Plethodon cinereus. J. Exp. Zool. 287, 340–345 (2000).

    CAS 

    Google Scholar 

  • Pei, J. & Jiang, L. Antimicrobial peptide from mucus of Andrias davidianus: Screening and purification by magnetic cell membrane separation technique. Int. J. Antimicrob. Agents 50, 41–46 (2017).

    CAS 

    Google Scholar 

  • Woodhams, D. C. et al. Adaptations of skin peptide defences and possible response to the amphibian chytrid fungus in populations of Australian green-eyed treefrogs, Litoria genimaculata. Div. Distrib. 16, 703–712 (2010).

    Google Scholar 

  • Hernández-Gómez, O., Briggler, J. T. & Williams, R. N. Influence of immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Mol. Ecol. 27, 1915–1929 (2018).

    Google Scholar 

  • Niyonsaba, F., Kiatsurayanon, C., Chieosilapatham, P. & Ogawa, H. Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol. 26, 989–998 (2017).

    CAS 

    Google Scholar 

  • Rollins-Smith, L. A., Ramsey, J. P., Pask, J. D., Reinert, L. K. & Woodhams, D. C. Amphibian immune defenses against chytridiomycosis: Impacts of changing environments. Integr. Comp. Biol. 51, 552–562 (2011).

    CAS 

    Google Scholar 

  • Chinchar, V. G. et al. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323, 268–275 (2004).

    CAS 

    Google Scholar 

  • Woodhams, D. C. et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9, e96375 (2014).

    ADS 

    Google Scholar 

  • Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N. & Minbiole, K. P. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl. Environ. Microbiol. 75, 6635–6638 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Bell, S. C., Garland, S. & Alford, R. A. Increased numbers of culturable inhibitory bacterial taxa may mitigate the effects of Batrachochytrium dendrobatidis in Australian wet tropics frogs. Front. Microbiol. 9, 1604 (2018).

    Google Scholar 

  • Zhang, L. & Gallo, R. L. Antimicrobial peptides. Curr. Biol. 26, R14–R19 (2016).

    CAS 

    Google Scholar 

  • Rollins-Smith, L. A. et al. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochem. Biophys. Res. Commun. 297, 361–367 (2002).

    CAS 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2013).

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • Hime, P. M. et al. Genomic data reveal conserved female heterogamety in giant salamanders with gigantic nuclear genomes. G3 Genes Genomes Genet. 9, 3467–3476 (2019).

    CAS 

    Google Scholar 

  • Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2–1. https://cran.r-project.org/package=AICcmodavg (2019).

  • Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach 2nd edn, 454 (Springer, 2002).

    MATH 

    Google Scholar 

  • Holden, W. M., Reinert, L. K., Hanlon, S. M., Parris, M. J. & Rollins-Smith, L. A. Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Dev. Comp. Immunol. 48, 65–75 (2015).

    CAS 

    Google Scholar 

  • De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3 (2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations

    Rescuing small plastics from the waste stream