in

‘Mainland-island’ population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation

  • 1.

    Hendry, A. P., Bolnick, D. I., Berner, D. & Peichel, C. L. Along the speciation continuum in sticklebacks. Journal of Fish Biology 75, 2000–2036, https://doi.org/10.1111/j.1095-8649.2009.02419.x (2009).

  • 2.

    Nosil, P. Ecological Speciation. Oxford University Press: Oxford, United Kingdom, https://doi.org/10.1093/acprof:osobl/9780199587100.001.0001 (2012).

  • 3.

    Harrison, R. G. Molecular changes at speciation. Annual Review of Ecology and Systematics 22, 281–308, https://doi.org/10.1146/annurev.ecolsys.22.1.281 (1991).

    • Article
    • Google Scholar
  • 4.

    Coyne, J. A. & Price, T. D. Little evidence for sympatric speciation in island birds. Evolution 54, 2166–2171, https://doi.org/10.1554/0014-3820(2000)054[2166:LEFSSI]2.0.CO;2 (2000).

  • 5.

    Shaw, K. L. & Mullen, S. P. Genes versus phenotypes in the study of speciation. Genetica 139, 649–661, https://doi.org/10.1007/s10709-011-9562-4 (2011).

  • 6.

    Shaw, K.L., Mullen, S.P. Speciation continuum. Journal of Heredity 105, (Special Issue), 741–742, https://doi.org/10.1093/jhered/esu060 (2014).

    • Article
    • Google Scholar
  • 7.

    Allentoft, M. E. & O’Brien, J. Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2, 47–71, https://doi.org/10.3390/d2010047 (2010).

    • Article
    • Google Scholar
  • 8.

    McCartney‐Melstad, E. & Shaffer, H. B. Amphibian molecular ecology and how it has informed conservation. Molecular Ecology 24, 5084–5109, https://doi.org/10.1111/mec.13391 (2015).

  • 9.

    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630–631, https://doi.org/10.1126/science.1258268 (2014).

  • 10.

    Spitzen-van der Sluijs, A. et al. Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands. Amphibia-Reptilia 34, 233–239, https://doi.org/10.1163/15685381-00002891 (2013).

    • Article
    • Google Scholar
  • 11.

    Weitere, M., Tautz, D., Neumann, D. & Steinfartz, S. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Molecular Ecology 13, 1665–1677, https://doi.org/10.1111/j.1365-294X.2004.02155.x (2004).

  • 12.

    Steinfartz, S., Weitere, M. & Tautz, D. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest. Molecular Ecology 16, 4550–4561, https://doi.org/10.1111/j.1365-294X.2007.03490.x (2007).

  • 13.

    Caspers, B. A. et al. The more the better – polyandry and genetic similarity are positively linked to reproductive success in a natural population of terrestrial salamanders (Salamandra salamandra). Molecular Ecology 23, 239–250, https://doi.org/10.1111/mec.12577 (2014).

  • 14.

    Frankham, R.; Ballou, J. D., Briscoe, D.A. Introduction to Conservation Genetics. Cambridge University Press: Cambridge, United Kingdom, https://doi.org/10.1017/CBO9780511808999 (2002).

  • 15.

    Willi, Y., van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annual Review of Ecology and Systematics 37, 433–458, https://doi.org/10.1146/annurev.ecolsys.37.091305.110145 (2006).

    • Article
    • Google Scholar
  • 16.

    Balkenhol, N. et al. Identifying future research needs in landscape genetics: where to from here? Landscape Ecology 24, 455–463, https://doi.org/10.1007/s10980-009-9334-z (2009).

    • Article
    • Google Scholar
  • 17.

    Hoban, S. M. et al. Bringing genetic diversity to the forefront of conservation policy and management. Conservation Genetics Resources 5, 593–598, https://doi.org/10.1007/s12686-013-9859-y (2013).

    • Article
    • Google Scholar
  • 18.

    Baudry, J., Bunce, R. G. & Burel, F. Hedgerows: an international perspective on their origin, function and management. Journal of Environmental Management 60, 7–22, https://doi.org/10.1006/jema.2000.0358 (2000).

    • Article
    • Google Scholar
  • 19.

    Janes, J. K. et al. The K = 2 conundrum. Molecular Ecology 26, 3594–3602, https://doi.org/10.1111/mec.14187 (2017).

  • 20.

    Pereira, R. J., Martínez‐Solano, I. & Buckley, D. Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto‐nuclear discordance in the fire salamander. Molecular Ecology 25, 1551–1565, https://doi.org/10.1111/mec.13575 (2016).

  • 21.

    Hendrix, R., Schmidt, B. R., Schaub, M., Krause, E. T., Steinfartz, S. Data from: Differentiation of movement behavior in an adaptively divergng salamander population. Dryad Digital Repository., https://doi.org/10.5061/dryad.h0r6q (2017).

  • 22.

    Pannekoek, A. J. The Ria problem. The role of antecedence, deep weathering, and Pleistocene slope-wash in the formation of the west-Galician Rias. Tijdschrift Koninklijk Nederlands Aardrijkskundig Genootschap 83, 289–297 (1966).

    • Google Scholar
  • 23.

    Szymura, J. M. & Barton, N. H. Genetic analysis of a hybrid zone between the fire‐bellied toads, Bombina bombina and B. variegata, near Cracow in southern Poland. Evolution 40, 1141–1159, https://doi.org/10.1111/j.1558-5646.1986.tb05740.x (1986).

  • 24.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

  • 25.

    Hendrix, R., Schmidt, B. R., Schaub, M., Krause, E. T. & Steinfartz, S. Differentiation of movement behaviour in an adaptively diverging salamander population. Molecular Ecology 26, 6400–6413, https://doi.org/10.1111/mec.14345 (2017).

  • 26.

    Caspers, B. A., Steinfartz, S. & Krause, E. T. Larval deposition behaviour and maternal investment of females reflect differential habitat adaptation in a genetically diverging salamander population. Behavioral Ecology and Sociobiology 69, 407–413, https://doi.org/10.1007/s00265-014-1853-1 (2015).

    • Article
    • Google Scholar
  • 27.

    Thiesmeier, B. Ökologie des Feuersalamanders. Westarp Wissenschaften: Essen, Germany (1992).

  • 28.

    Thiesmeier, B. & Grossenbacher, K. Salamandra salamandra (Linnaeus, 1758) —Feuersalamander. Pp. 1059-1132 in: Handbuch der Reptilien und Amphibien Europas: Schwanzlurche IIB. Eds. Thiesmeier, B. and K. Grossenbacher. Aula Verlag: Wiebelsheim, Germany (2004).

  • 29.

    Hanski, I. & Gilpin, M. Metapopulation dynamics: brief history and conceptual domain. Biological Journal of the Linnean Society 42, 3–16, https://doi.org/10.1111/j.1095-8312.1991.tb00548.x (1991).

    • Article
    • Google Scholar
  • 30.

    Dias, J. M. A., Boski, T., Rodrigues, A. & Magalhaes, F. Coast line evolution in Portugal since the Last Glacial Maximum until present – a synthesis. Marine Geology 170, 177–186, https://doi.org/10.1016/S0025-3227(00)00073-6 (2000).

  • 31.

    Velo-Antón, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108, 410–418, https://doi.org/10.1038/hdy.2011.91 (2012).

  • 32.

    Lourenço, A., Sequeira, F., Buckley, D. & Velo‐Antón, G. Role of colonization history and species‐specific traits on contemporary genetic variation of two salamander species in a Holocene island‐mainland system. Journal of Biogeography 45, 1054–1066, https://doi.org/10.1111/jbi.13192 (2018).

    • Article
    • Google Scholar
  • 33.

    Baudin, B. Amphibiens et Reptiles de la Mayenne. Mayenne Nature Environnement: Laval, France (2010).

  • 34.

    Schoorl, J. & Zuiderwijk, A. Ecological isolation in Triturus cristatus and Triturus marmoratus (Amphibia: Salamandridae). Amphibia-Reptilia 1, 235–252, https://doi.org/10.1163/156853881X00357 (1980).

    • Article
    • Google Scholar
  • 35.

    Arntzen, J. W., Abrahams, C., Meilink, W. R. M., Iosif, R. & Zuiderwijk, A. Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodiversity and Conservation 26, 1411–1430, https://doi.org/10.1007/s10531-017-1307-y (2017).

    • Article
    • Google Scholar
  • 36.

    Boissinot, A., Besnard, A. & Lourdais, O. Amphibian diversity in farmlands: combined influences of breeding-site and landscape attributes in western France. Agriculture Ecosystems and Environment 269, 51–61, https://doi.org/10.1016/j.agee.2018.09.016 (2019).

    • Article
    • Google Scholar
  • 37.

    Visser, M., de Leeuw, M., Zuiderwijk, A. & Arntzen, J. W. Stabilization of a salamander moving hybrid zone. Ecology and Evolution 7, 689–696, https://doi.org/10.1002/ece3.2676 (2017).

  • 38.

    Barton, N. H., Gale, K. S. Genetic analysis of hybrid zones. Pp. 13-45 in Harrison RG. Hybrid Zones and the Evolutionary Process. Oxford University Press, Oxford, United Kingdom(1993).

  • 39.

    Seifert, D. Untersuchungen an einer ostthüringischen Population des Feuersalamanders. Salamandra salamandra. Artenschutzreport 1, 1–6 (1991).

    • Google Scholar
  • 40.

    Trochet, A. et al. A database of life-history traits of European amphibians. Biodiversity Data Journal 2, https://doi.org/10.3897/BDJ.2.e4123 (2014).

    • Article
    • Google Scholar
  • 41.

    Barton, N. H. The dynamics of hybrid zones. Heredity 43, 341–359, https://doi.org/10.1038/hdy.1979.87 (1979).

    • Article
    • Google Scholar
  • 42.

    Barton, N. H. & Hewitt, G. M. Analysis of hybrid zones. Annual Review of Ecology and Systematics 16, 113–148, https://doi.org/10.1146/annurev.es.16.110185.000553 (1985).

    • Article
    • Google Scholar
  • 43.

    Eiselt, J. Der Feuersalamander Salamandra salamandra (L.). Beiträge zu einer taxonomischen Synthese. Abhandlungen und Berichte für Naturkunde und Vorgeschichte Magdeburg 10, 77–154 (1959).

    • Google Scholar
  • 44.

    Bhagwat, S. A. & Willis, K. J. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography 35, 464–482, https://doi.org/10.1111/j.1365-2699.2007.01861.x (2008).

    • Article
    • Google Scholar
  • 45.

    Magri, D. et al. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist 171, 199–221, https://doi.org/10.1111/j.1469-8137.2006.01740.x (2006).

  • 46.

    Reinhardt, T. S., Steinfartz, S., Paetzold, A. & Weitere, M. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173, 281–291, https://doi.org/10.1007/s00442-013-2592-0 (2013).

  • 47.

    Thiesmeier, B. & Mutz, T. Zur Laichzeit und Larvalentwicklung des Feuersalamanders (Salamandra salamandra terrestris) im nordwestdeutschen Tiefland. Zeitschrift für Feldherpetologie 4, 115–125 (1997).

    • Google Scholar
  • 48.

    Duguet, R., Melki, F. (eds) Les Amphibiens de France, Belgique et Luxembourg. Biotope: Mèze, France (2003).

  • 49.

    Steinfartz, S., Stemshorn, K., Kuesters, D. & Tautz, D. Patterns of multiple paternity within and between annual reproduction cycles of the fire salamander (Salamandra salamandra) under natural conditions. Journal of Zoology 268, 1–8, https://doi.org/10.1111/j.1469-7998.2005.00001.x (2006).

    • Article
    • Google Scholar
  • 50.

    Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21, 3907–3930, https://doi.org/10.1111/j.1365-294X.2012.05664.x (2012).

  • 51.

    Sloan, D. B., Havird, J. C. & Sharbrough, J. The on‐again‐off‐again relationship between mitochondrial genomes and species boundaries. Molecular Ecology 26, 2212–2236, https://doi.org/10.1111/mec.13959 (2016).

    • Article
    • Google Scholar
  • 52.

    Bonnet, T., Leblois, R., Rousset, F. & Crochet, P. ‐A. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 71, 2140–2158, https://doi.org/10.1111/evo.13296 (2017).

  • 53.

    Álvarez, D., Lourenço, A., Oro, D. & Velo-Antón, G. Assessment of census (N) and effective population size (Ne) reveals consistency of Ne single-sample estimators and a high Ne/N ratio in an urban and isolated population of fire salamanders. Conservation Genetics Resources 7, 705–712, https://doi.org/10.1007/s12686-015-0480-0 (2015).

    • Article
    • Google Scholar
  • 54.

    Lourenço, A., Alvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Molecular Ecology 26, 1498–1514, https://doi.org/10.1111/mec.14019 (2017).

  • 55.

    Lourenço, A., Antunes, B., Wang, I. J. & Velo-Antón, G. Fine-scale genetic structure in a salamander with two reproductive modes: Does reproductive mode affect dispersal? Evolutionary Ecology 32, 699–732, https://doi.org/10.1007/s10682-018-9957-0 (2018).

    • Article
    • Google Scholar
  • 56.

    Konowalik, A., Najbar, A., Babik, W., Steinfartz, S. & Ogielska, M. Genetic structure of the fire salamander Salamandra salamandra in the Polish Sudetes. Amphibia-Reptilia 37, 405–415, https://doi.org/10.1163/15685381-00003071 (2016).

    • Article
    • Google Scholar
  • 57.

    Krause, E. T. & Caspers, B. A. The influence of a water current on the larval deposition pattern of females of a diverging fire salamander population (Salamandra salamandra). Salamandra 51, 156–60 (2015).

    • Google Scholar
  • 58.

    ILWIS. Integrated Land and Water Information System (ILWIS). Open software version 3.6. ITC: Enschede, The Netherlands (2009).

  • 59.

    Steinfartz, S., Kuesters, D. & Tautz, D. Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata). Molecular Ecology Notes 4, 626–628, https://doi.org/10.1111/j.1471-8286.2004.00716.x (2004).

  • 60.

    Hendrix, R., Hauswaldt, S., Veith, M. & Steinfartz, S. Strong correlation between cross‐amplification success and genetic distance across all members of ‘True Salamanders’(Amphibia: Salamandridae) revealed by Salamandra salamandra‐specific microsatellite loci. Molecular Ecology Resources 10, 1038–1047, https://doi.org/10.1111/j.1755-0998.2010.02861.x (2010).

  • 61.

    Steinfartz, S., Veith, M. & Tautz, D. Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Molecular Ecology 9, 397–410, https://doi.org/10.1046/j.1365-294x.2000.00870.x (2000).

  • 62.

    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621–631, https://doi.org/10.1093/molbev/msl191 (2007).

  • 63.

    Rousset, F. GenePop’007: a complete re‐implementation of the GenePop software for Windows and Linux. Molecular Ecology Resources 8, 103–106, https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).

  • 64.

    Jorde, P. E., Andersson, A., Ryman, N. & Laikre, L. Are we underestimating the occurrence of sympatric populations? Molecular Ecology 27, 4011–4025, https://doi.org/10.1111/mec.14846 (2018).

  • 65.

    Clarke, K. R., Gorley, R. N. Primer v6: User Manual/Tutorial. Primer-e: Plymouth, United Kingdom (2006).

  • 66.

    Jombart, T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405, https://doi.org/10.1093/bioinformatics/btn129 (2008).

  • 67.

    Jombart, T., Pontier, D. & Dufour, A. B. Genetic markers in the playground of multivariate analysis. Heredity 102, 330, https://doi.org/10.1038/hdy.2008.130 (2009).

  • 68.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

  • 69.

    Earl, D. A. & vonHoldt, B. M. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361, https://doi.org/10.1007/s12686-011-9548-7 (2012).

    • Article
    • Google Scholar
  • 70.

    Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources 10, 551–555, https://doi.org/10.1111/j.1755-0998.2009.02787.x (2010).

  • 71.

    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90, 502–503, https://doi.org/10.1093/jhered/90.4.502 (1999).

    • Article
    • Google Scholar
  • 72.

    Nielsen, R. A maximum likelihood approach to population samples of microsatellite alleles. Genetics 146, 711–716 (1997).

  • 73.

    Derryberry, E. P., Derryberry, G. E., Maley, J. M. & Brumfield, R. T. HZAR: hybrid zone analysis using an R software package. Molecular Ecology Resources 14, 652–663, https://doi.org/10.1111/1755-0998.12209 (2014).

  • 74.

    Prada, C. & Hellberg, M. E. Strong natural selection on juveniles maintains a narrow adult hybrid zone in a broadcast spawner. American Naturalist 184, 702–713, https://doi.org/10.1086/678403 (2014).

  • 75.

    Larkin, M. A. et al. ClustalW and ClustalX version 2. Bioinformatics 23, 2947–2948, https://doi.org/10.1093/bioinformatics/btm404 (2007).

  • 76.

    IBM SPSS. Statistical Package for the Social Sciences. SPSS Inc., Chicago, USA (2016).

  • 77.

    Goldberg, C. S. & Waits, L. P. Quantification and reduction of bias from sampling larvae to infer population and landscape genetic structure. Molecular Ecology Resources 10, 304–313, https://doi.org/10.1111/j.1755-0998.2009.02755.x (2010).

  • 78.

    Sánchez-Montes, G., Ariño, A. H., Vizmanos, J. L., Wang, J. & Martínez-Solano, I. Effects of sample size and full sibs on genetic diversity characterization: a case study of three syntopic Iberian pond-breeding amphibians. Journal of Heredity 108, 535–543, https://doi.org/10.1093/jhered/esx038 (2017).

  • 79.

    O’Connell, K. A., Mulder, K. P., Maldonado, J., Currie, K. L. & Ferraro, D. M. Sampling related individuals within ponds biases estimates of population structure in a pond‐breeding amphibian. Ecology and Evolution 9, 3620–3636, https://doi.org/10.1002/ece3.4994 (2019).

  • 80.

    Najbar, A., Babik, W., Najbar, B. & Ogielska, M. Genetic structure and differentiation of the fire salamander Salamandra salamandra at the northern margin of its range in the Carpathians. Amphibia-Reptilia 36, 301–331, https://doi.org/10.1163/15685381-00003005 (2015).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries