in

Multivariate climate departures have outpaced univariate changes across global lands

  • 1.

    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Chang. 8, 579 (2018).

  • 2.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    • Article
    • Google Scholar
  • 3.

    Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: new methods and insights at continental to landscape scales. Glob. Chang. Biol. (2017).

  • 4.

    Flannigan, M. D. & Harrington, J. B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). J. Appl. Meteorol. 27, 441–452 (1988).

  • 5.

    Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43 (2010).

  • 6.

    Duffy, P. B. et al. Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science 363, eaat5982 (2019).

  • 7.

    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

  • 8.

    Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 34009 (2011).

    • Article
    • Google Scholar
  • 9.

    Frame, D., Joshi, M., Hawkins, E., Harrington, L. J. & de Roiste, M. Population-based emergence of unfamiliar climates. Nat. Clim. Chang. 7, 407 (2017).

  • 10.

    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Chang. Biol. 19, 241–251 (2013).

  • 11.

    Hao, Z., AghaKouchak, A. & Phillips, T. J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8, 34014 (2013).

    • Article
    • Google Scholar
  • 12.

    Mazdiyasni, O. & AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. 112, 11484–11489 (2015).

  • 13.

    Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).

  • 14.

    Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

  • 15.

    Mora, C. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 8, 1062–1071 (2018).

  • 16.

    Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32 (2005).

  • 17.

    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Rev. 99, 125–161 (2010).

  • 18.

    Willmott, C. J., Rowe, C. M. & Mintz, Y. Climatology of the terrestrial seasonal water cycle. J. Climatol. 5, 589–606 (1985).

    • Article
    • Google Scholar
  • 19.

    Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Chang. Biol. 24, 5164–5175 (2018).

  • 20.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    • Article
    • Google Scholar
  • 21.

    van Mantgem, P. J. et al. Climatic stress increases forest fire severity across the western U nited S tates. Ecol. Lett. 16, 1151–1156 (2013).

  • 22.

    Wada, Y. et al. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett. 40, 4626–4632 (2013).

  • 23.

    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

  • 24.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235 (2015).

  • 25.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. 106, 15594–15598 (2009).

  • 26.

    Inouye, D. W. The ecological and evolutionary significance of frost in the context of climate change. Ecol. Lett. 3, 457–463 (2000).

    • Article
    • Google Scholar
  • 27.

    Apadula, F., Bassini, A., Elli, A. & Scapin, S. Relationships between meteorological variables and monthly electricity demand. Appl. Energy 98, 346–356 (2012).

    • Article
    • Google Scholar
  • 28.

    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 34011 (2014).

    • Article
    • Google Scholar
  • 29.

    Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 649–670 (1990).

    • Article
    • Google Scholar
  • 30.

    Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).

  • 31.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

  • 32.

    Lutz, J. A., van Wagtendonk, J. W. & Franklin, J. F. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. J. Biogeogr. 37, 936–950 (2010).

    • Article
    • Google Scholar
  • 33.

    Parks, S. A., Parisien, M.-A., Miller, C. & Dobrowski, S. Z. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. Plos One 9, e99699 (2014).

  • 34.

    Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl. Acad. Sci. USA 108, 13165–13170 (2011).

  • 35.

    Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions. Proc. Natl. Acad. Sci. 106, 19685 LP–19692 (2009).

  • 36.

    Fitzpatrick, M. C. & Dunn, R. R. Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nat. Commun. 10, 614 (2019).

  • 37.

    Wolter, K. & Timlin, M. S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). Int. J. Climatol. 31, 1074–1087 (2011).

    • Article
    • Google Scholar
  • 38.

    Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

  • 39.

    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183 (2013).

  • 40.

    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, (2012).

  • 41.

    Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M. & Cook, E. R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 121, 2060–2074 (2016).

  • 42.

    Coumou, D. & Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 8, 34018 (2013).

    • Article
    • Google Scholar
  • 43.

    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327 (2013).

  • 44.

    Screen, J. A. Arctic amplification decreases temperature variance in northern mid-to high-latitudes. Nat. Clim. Chang. 4, 577–582 (2014).

  • 45.

    Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Chang. 8, 427 (2018).

  • 46.

    Diffenbaugh, N. S. & Ashfaq, M. Intensification of hot extremes in the United States. Geophys. Res. Lett. 37, (2010).

  • 47.

    Seager, R., Naik, N. & Vogel, L. Does global warming cause intensified interannual hydroclimate variability? J. Clim. 25, 3355–3372 (2012).

  • 48.

    Mahony, C. R. & Cannon, A. J. Wetter summers can intensify departures from natural variability in a warming climate. Nat. Commun. 9, 783 (2018).

  • 49.

    Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. 116, 6193–6198 (2019).

  • 50.

    Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. 107, 9552–9555 (2010).

  • 51.

    Ebi, K. L. & Nealon, J. Dengue in a changing climate. Environ. Res. 151, 115–123 (2016).

  • 52.

    Hatfield, J. et al. Climate change impacts in the United States: The third national climate assessment. Washington, DC 150–174 (2014).

  • 53.

    Sivakumar, M. V. K., Das, H. P. & Brunini, O. Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. in increasing climate variability and change 31–72 (Springer, 2005).

  • 54.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    • Article
    • Google Scholar
  • 55.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

  • 56.

    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517 (2011).

  • 57.

    Thomas, C. D. Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol. Evol. 26, 216–221 (2011).

  • 58.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

  • 59.

    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B Biol. Sci. 367, 1665–1679 (2012).

    • Article
    • Google Scholar
  • 60.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

  • 61.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., https://doi.org/10.1002/joc.5086 (2017).

  • 62.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    • Article
    • Google Scholar
  • 63.

    Gleick, P. H. The development and testing of a water balance model for climate impact assessment: modeling the Sacramento basin. Water Resour. Res. 23, 1049–1061 (1987).

  • 64.

    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

  • 65.

    Parks, S. A. et al. Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere 6, 1–13 (2015).

    • Article
    • Google Scholar
  • 66.

    Parker, L. E. & Abatzoglou, J. T. Projected changes in cold hardiness zones and suitable overwinter ranges of perennial crops over the United States. Environ. Res. Lett. 11, 34001 (2016).

    • Article
    • Google Scholar
  • 67.

    Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).

  • 68.

    Wriedt, G., V der Velde, M., Aloe, A. & Bouraoui, F. Estimating irrigation water requirements in Europe. J. Hydrol. 373, 527–544 (2009).

  • 69.

    Hulme, M. & New, M. Dependence of large-scale precipitation climatologies on temporal and spatial sampling. J. Clim. 10, 1099–1113 (1997).

  • 70.

    AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).

  • 71.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).

  • 72.

    Williams, A. P. et al. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 42, 6819–6828 (2015).

  • 73.

    Mitchell, T. D. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).


  • Source: Ecology - nature.com

    Flash droughts present a new challenge for subseasonal-to-seasonal prediction

    Green gravel: a novel restoration tool to combat kelp forest decline