in

Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events

[adace-ad id="91168"]
  • 1.

    Reaka-Kudla, M. L. Known and Unknown Biodiversity, Risk of Extinction and Conservation Strategy in the Sea. In Waters in Peril 19–33 (Springer US, 2001).

  • 2.

    Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS One 13 (2018).

  • 3.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  • 4.

    The IUCN Red List of Threatened Species. Version 2018-2, http://www.iucnredlist.org (2018).

  • 5.

    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).

  • 6.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

  • 7.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 201704949 (2017).

  • 8.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345 (2014).

  • 9.

    Pievani, T. The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rend. Lincei 25, 85–93 (2014).

    • Article
    • Google Scholar
  • 10.

    Wake, D. B. & Vredenburg, V. T. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA 11466–73 (2008).

  • 11.

    Tchernov, D., Mass, T. & Gruber, D. F. Symbiotic transition of algae-coral triggered by paleoclimatic events? Trends Ecol. Evol. 27, 194–5 (2012).

  • 12.

    Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evolutionary Biology 11, (2011).

  • 13.

    Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006).

  • 14.

    Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

  • 15.

    Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival in the first hours of the cenozoic. Bull. Geol. Soc. Am. 116, 760–768 (2004).

    • Article
    • Google Scholar
  • 16.

    Galeotti, S., Brinkhuis, H. & Huber, M. Records of post–Cretaceous-Tertiary boundary millennial-scale cooling from the western Tethys: A smoking gun for the impact-winter hypothesis? Geology 32, 529 (2004).

  • 17.

    D’Hondt, S., Pilson, M. E. Q., Sigurdsson, H., Hanson, A. K. & Carey, S. Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22, 983–986 (1994).

  • 18.

    Nenes, A. et al. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans. Atmos. Chem. Phys. 11, 6265–6272 (2011).

  • 19.

    Coccioni, R. & Galeotti, S. K-T boundary extinction: Geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera. Geology 22, 779 (1994).

  • 20.

    Vellekoop, J. et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc. Natl. Acad. Sci. USA 111, 7537–41 (2014).

  • 21.

    Joshi, M. et al. Global warming and ocean stratification: A potential result of large extraterrestrial impacts. Geophys. Res. Lett. 44, 3841–3848 (2017).

  • 22.

    Wood, R. Reef Evolution. (Oxford Univ. Press, 1999).

  • 23.

    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

  • 24.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

  • 25.

    Snyder, C. W. Revised estimates of paleoclimate sensitivity over the past 800,000 years. Clim. Change 156, 121–138 (2019).

  • 26.

    Mostofa, K. M. G. et al. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems. Biogeosciences Discussions (2015).

  • 27.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science. 301 (2003).

  • 28.

    Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).

  • 29.

    International Union for Conservation of Nature, IUCN Species Survival Commission. IUCN Red List Categories and Criteria: Version 3.1. (2001).

  • 30.

    Kiessling, W. & Baron-Szabo, R. C. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 195–223 (2004).

    • Article
    • Google Scholar
  • 31.

    Bay, L. K., Doyle, J., Logan, M. & Berkelmans, R. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. R. Soc. Open Sci. 3, 160322 (2016).

  • 32.

    Goulet, T. L. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 321, 1–7 (2006).

  • 33.

    Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).

    • Article
    • Google Scholar
  • 34.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

  • 35.

    Swain, T. D. et al. Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching. Glob. Chang. Biol. 22, 2475–88 (2016).

  • 36.

    Swain, T. D. et al. Relating coral skeletal structures at different length scales to growth, light availability to Symbiodinium, and thermal bleaching. Front. Mar. Sci. 5, (2018).

  • 37.

    Swain, T. D. et al. Physiological integration of coral colonies is correlated with bleaching resistance. Mar. Ecol. Prog. Ser. 586, 1–10 (2018).

  • 38.

    Warwick, R. M. & Clarke, K. R. Comparing the severity of disturbance; a meta-analysis of marine macrobenthic community data. Mar. Ecol. Prog. Ser. (1993).

  • 39.

    Rosen, B. R. Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K±T boundary. In Biotic Response to Global Change: The Last 145 Million Years (ed. Culver, Stephen J, P. F. R.) 164–180 (Cambridge University Press, 2000).

  • 40.

    Kiessling, W. & Kocsis, Á. T. Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology 41, 402–414 (2015).

    • Article
    • Google Scholar
  • 41.

    Edmunds, P. J. et al. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS One 9, e107525 (2014).

  • 42.

    Pandolfi, J. M. & Kiessling, W. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 7, 52–58 (2014).

    • Article
    • Google Scholar
  • 43.

    van Woesik, R. et al. Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc. R. Soc. London B Biol. Sci. (2012).

  • 44.

    Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012).

  • 45.

    Stanley, G. D. & van de Schootbrugge, B. The Evolution of the Coral–Algal Symbiosis. In 7–19 (Springer Berlin Heidelberg, 2009).

  • 46.

    Jablonski, D. Extinction and the spatial dynamics of biodiversity. Proc. Natl. Acad. Sci. USA 105, 11528–11535 (2008).

  • 47.

    Jablonski, D. Mass extinctions and macroevolution. Paleobiology 31, (2005).

  • 48.

    Barbeitos, M. S., Romano, S. L. & Lasker, H. R. Repeated loss of coloniality and symbiosis in scleractinian corals. Proc. Natl. Acad. Sci. 107, 11877–11882 (2010).

  • 49.

    Edinger, E. N. & Risk, M. J. Oligocene-Miocene extinction and geographic restriction of Caribbean corals: Roles of turbidity, temperature, and nutrients. Palaios 9, 576 (1994).

  • 50.

    Kaiho, K. A low extinction rate of intermediate-water benthic foraminifera at the Cretaceous/Tertiary boundary. Mar. Micropaleontol. 18, 229–259 (1992).

  • 51.

    Stanley, G. D. Photosymbiosis and the evolution of modern coral reefs. Science 312, 857–858 (2006).

  • 52.

    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).

  • 53.

    Lough, J. M. & Cantin, N. E. Perspectives on massive coral growth rates in a changing ocean. Biol. Bull. 226, 187–202 (2014).

  • 54.

    Randall, C. J., Jordan-Garza, A. G., Muller, E. M. & van Woesik, R. Relationships between the history of thermal stress and the relative risk of diseases of Caribbean corals. Ecology 95, 1981–1994 (2014).

  • 55.

    Stanley, G. D. J. & Lipps, J. H. Photosymbiosis: The driving force for reef success and failure. Corals Reef Cris. Collapse Chang. The Paleon, 33–60 (2011).

  • 56.

    Fautin, D. G. & Buddemeier, R. W. Adaptive bleaching: a general phenomenon. In Coelenterate Biology 2003 459–467 (Springer Netherlands, 2004).

  • 57.

    Johnson, K. G., Budd, A. F. & Stemann, T. A. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21, 52–73 (1995).

    • Article
    • Google Scholar
  • 58.

    Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauley, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353 (2016).

  • 59.

    Harries, P. J. & Knorr, P. O. What does the ‘Lilliput Effect’ mean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4–10 (2009).

    • Article
    • Google Scholar
  • 60.

    Buffetaut, E. Continental Vertebrate Extinctions at the Triassic-Jurassic and Cretaceous-Tertiary Boundaries: a Comparison. In Biological Processes Associated with Impact Events 245–256 (Springer-Verlag, 2006).

  • 61.

    Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946 (2017).

  • 62.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (2001).

  • 63.

    Hönisch, B. et al. The geological record of ocean acidification. Science 335 (2012).


  • Source: Ecology - nature.com

    Flash droughts present a new challenge for subseasonal-to-seasonal prediction

    Green gravel: a novel restoration tool to combat kelp forest decline