More stories

  • in

    What kind of seed dormancy occurs in the legume genus Cassia?

    1.
    Irwin, H. S. & Barneby, R. C. Tribe Cassieae Bronn. In Recent Advances in Legume Systematics, pt 1 (eds Polhill, R. M. & Raven, P. H.) 97–106 (Royal Botanic Gardens, London, 1981).
    Google Scholar 
    2.
    Irwin, H. S. & Barneby, R. C. The American Cassiinae, a synoptical revision of Leguminosae tribe Cassiae subtribe Cassiinae in the New World. Mem. N. Y. Bot. Gard. 35, 1–918 (1982).
    Google Scholar 

    3.
    Irwin, H. S. & Turner, B. L. Chromosome relationships and taxonomic considerations in the genus Cassia. Am. J. Bot. 47, 309–318 (1960).
    Google Scholar 

    4.
    Randell, B. R. Revision of the Cassiinae in Australia. 1. Senna Miller sect. Chamaefistula (Colladon) Irwin and Barneby. J. Adelaide Bot. Gard. 11, 19–49 (1988).
    Google Scholar 

    5.
    Lewis, G. P. Tribe Cassieae. In Legumes of the World (eds Lewis, G. P. et al.) 111–126 (Royal Botanic Gardens, Kew, 2005).
    Google Scholar 

    6.
    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: The fruits the Gomphotheres ate. Science 215, 19–27 (1982).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Sci. Res. 14, 1–16 (2004).
    ADS  Google Scholar 

    8.
    Baskin, C. C. & Baskin, J. M. Seed dormancy in trees of climax tropical vegetation types. Trop. Ecol. 46, 17–28 (2005).
    Google Scholar 

    9.
    Baskin, C. C. & Baskin, J. M. Seeds: Ecology, biogeography and evolution of dormancy and germination 2nd edn. (Elsevier, Amsterdam, 2014).
    Google Scholar 

    10.
    De Paula, A. S., Delgado, C. M. L., Paulilo, M. T. S. & Santos, M. Breaking physical dormancy of Cassia leptophylla and Senna macranthera (Fabaceae: Caesalpinioideae) seeds: Water absorption and alternating temperatures. Seed Sci. Res. 22, 259–267 (2012).
    Google Scholar 

    11.
    Jayasuriya, K. M. G. G., Wijetunga, A. S. T. B., Baskin, J. M. & Baskin, C. C. Seed dormancy and storage behaviour in tropical Fabaceae: A study of 100 species from Sri Lanka. Seed Sci. Res. 23, 257–269 (2013).
    Google Scholar 

    12.
    Rodrigues-Junior, A. G., Faria, J. M. R., Vaz, T. A. A., Nakamura, A. T. & José, A. C. Physical dormancy in Senna multijuga (Fabaceae: Caesalpinioideae) seeds: The role of seed structures in water uptake. Seed Sci. Res. 24, 147–157 (2014).
    Google Scholar 

    13.
    Rodrigues-Junior, A. G. et al. A function for the pleurogram in physically dormant seeds. Ann. Bot. 123, 867–876 (2019).
    PubMed  Google Scholar 

    14.
    Erickson, T. E., Merritt, D. J. & Turner, S. R. Overcoming physical seed dormancy in priority native species for use in arid-zone restoration programs. Aust. J. Bot. 64, 401–416 (2016).
    Google Scholar 

    15.
    Baskin, J. M., Baskin, C. C. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139–152 (2000).
    Google Scholar 

    16.
    Gill, L. S., Hasaini, S. W. H. & Musa, A. H. Germination biology of some Cassia L. species (Leguminosae). Legume Res. 5, 97–104 (1982).
    Google Scholar 

    17.
    Grice, A. C. & Westoby, M. Aspects of the dynamics of the seed-banks and seedling populations of Acacia victoriae and Cassia spp. in arid western New South Wales. Aust. J. Ecol. 12, 209–215 (1987).
    Google Scholar 

    18.
    Jurado, E. & Westoby, M. Germination biology of selected central Australian plants. Aust. J. Ecol. 17, 341–348 (1992).
    Google Scholar 

    19.
    Todaria, N. P. & Negi, A. K. Pretreatment of some Indian Cassia seeds to improve their germination. Seed Sci. Technol. 20, 583–588 (1992).
    Google Scholar 

    20.
    Sahai, K. Structural diversity in the lens of the seed of some Cassia L. (Caesalpinioideae) species and its taxonomic significance. Phytomorphology 49, 203–208 (1999).
    Google Scholar 

    21.
    Jayasuriya, K. M. G. G., Baskin, J. M. & Baskin, C. C. Sensitivity cycling and its ecological role in seeds with physical dormancy. Seed Sci. Res. 19, 3–13 (2009).
    Google Scholar 

    22.
    Gama-Arachchige, N. S., Baskin, J. M., Geneve, R. L. & Baskin, C. C. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Ann. Bot. 112, 69–84 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Geneve, R. L., Baskin, C. C., Baskin, J. M., Jayasuriya, K. M. G. G. & Gama-Arachchige, N. S. Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Sci. Res. 28, 186–191 (2018).
    Google Scholar 

    24.
    Rodrigues-Junior, A. G., Baskin, C. C., Baskin, J. M. & Garcia, Q. S. Sensitivity cycling in physically dormant seeds of the Neotropical tree Senna multijuga (Fabaceae). Plant Biol. 20, 698–706 (2018).
    CAS  PubMed  Google Scholar 

    25.
    Rodrigues-Junior, A. G. et al. Why large seeds with physical dormancy become nondormant earlier than small ones. PLoS ONE 13, e0202038 (2018).
    PubMed  PubMed Central  Google Scholar 

    26.
    Cherubin, M. R., Moraes, M. T., Weirich, S. W., Fabbris, C. & Rocha, E. M. T. Avaliação de métodos de superação de dormência tegumentar em sementes de Cassia leptophylla Vog. Encicl. Biosf. 7, 1–7 (2011).
    Google Scholar 

    27.
    Reddy, V. Presowing treatments to improve Cassia and Calliandra seed germination. Acta Hortic. 226, 537–540 (1988).
    Google Scholar 

    28.
    Lopes, J. C., Capucho, M. T., Krohling, B. & Zanotti, P. Germinação de sementes de espécies florestais de Caesalpinea ferrea Mart. ex Tul. Var. leiostachya Benth., Cassia grandis L. e Samanea saman Merrill, após tratamentos para superar a dormência. Rev. Bras. Sem. 20, 80–86 (1998).
    Google Scholar 

    29.
    Faruqi, M. A., Kahan, M. K. & Uddin, M. G. Comparative studies on the effects of ultrasonics, red light and gibberellic acid, on the germination of Cassia holosericea Fres. seeds. Pak. J. Sci. Ind. Res. 81, 102–104 (1974).
    Google Scholar 

    30.
    Martin, R. E., Miller, R. L. & Cushwa, C. T. Germination response of legume seeds subjected to moist and dry heat. Ecology 56, 1441–1445 (1975).
    Google Scholar 

    31.
    Rizzini, C. T. Influência da temperatura sobre a germinação de diásporos do Cerrado. Rodriguésia 28, 341–381 (1976).
    Google Scholar 

    32.
    Bhatia, R. K., Chawan, D. D. & Sen, D. N. Environment controlled seed dormancy in Cassia spp.. Geobios 4, 208–210 (1977).
    Google Scholar 

    33.
    Zegers, C. D. & Lechuga, A. C. Antecedentes fenológicos y de germinación de espécies lenhosas chilenas. Rev. Cienc. For. 1, 31–37 (1978).
    Google Scholar 

    34.
    Daiya, K. S., Sharma, H. K., Chawan, D. D. & Sen, D. N. Effect of salt solutions of different osmotic potential on seed germination and seedling growth in some Cassia species. Folia Geobot. 15, 149–153 (1980).
    Google Scholar 

    35.
    Teem, D. H., Hoveland, C. S. & Buchanan, G. A. Sicklepod (Cassia obtusifolia) and Cofffe Senna (Cassia occidentalis): Geographic distribution, germination, and emergence. Weed Sci. 28, 68–71 (1980).
    Google Scholar 

    36.
    Felippe, G. M. & Polo, M. Germinação de ervas invasoras: efeito de luz e escarificação. Rev. Bras. Bot. 6, 55–60 (1983).
    Google Scholar 

    37.
    Kay, B. L., Pergler, C. C. & Graves, W. L. Storage of seed of Mojave desert shrubs. J. Seed Technol. 9, 20–28 (1984).
    Google Scholar 

    38.
    Khan, D., Shaukat, S. S. & Faheemuddin, M. Germination studies of certain desert plants. Pak. J. Bot. 16, 231–254 (1984).
    Google Scholar 

    39.
    Cissé, A.M. Dynamique de la strate herbacée des pâturages de la zone sud-sahélienne. Thesis. Wageningen, NL (1986).

    40.
    Al-Helal, A. A., Al-Farraj, M. M., El-Desoki, R. A. & Al-Habashi, I. Germination response of Cassia senna L. seeds to sodium salts and temperature. J Univ. Kuwait 16, 281–286 (1989).
    CAS  Google Scholar 

    41.
    Elberse, W. T. & Breman, H. Germination and establishment of Sahelian rangeland species. I. Seed properties. Oecologia 80, 477–484 (1989).
    ADS  PubMed  Google Scholar 

    42.
    Bhattacharya, A. & Saha, P. Ultrastructure of seed coat and water uptake pattern of seeds during germination in Cassia sp.. Seed Sci. Technol. 18, 97–100 (1990).
    Google Scholar 

    43.
    Rodrigues, E. H. A., Aguiar, I. B. & Sader, R. Quebra de dormência de sementes de três espécies do gênero Cassia. Rev. Bras. Sem. 12, 17–27 (1990).
    Google Scholar 

    44.
    Capelanes, T.M.C. Tecnologia de sementes de espécies florestais na Companhia Energética de São Paulo. II Simpósio Brasileiro sobre tecnologia de sementes florestais. 49–57 (1991).

    45.
    Francis, J.K. & Rodriguez, A. Seeds of Puerto Rican trees and shrubs: second installment. USDA. Forest Service, Southern Forest Experiment Station. Note SO-374: 1–5 (1993).

    46.
    Lezama, C. P., Polito, J. C. & Morfín, F. C. Germinación de semillas de espécies de vegetación primaria y secundaria (estúdios comparativos). Cienc. For. Méx. 18, 3–19 (1993).
    Google Scholar 

    47.
    Agboola, D. A. Dormancy and seed germination in some weeds of tropical waste lands. Niger. J. Bot. 11, 79–87 (1998).
    Google Scholar 

    48.
    Baskin, J. M., Nan, X. & Baskin, C. C. A comparative study of seed dormancy and germination in an annual and a perennial species of Senna (Fabaceae). Seed Sci. Res. 8, 501–512 (1998).
    Google Scholar 

    49.
    Jeller, H. & Perez, S. C. J. G. A. Estudo da superação da dormência e da temperatura em sementes de Cassia excelsa Schrad. Rev. Bras. Sem. 21, 32–40 (1999).
    Google Scholar 

    50.
    Fowler, J.A.P. & Bianchetti, A. Dormência em sementes florestais. Embrapa Florestas (2000).

    51.
    Bargali, K. & Singh, S. P. Germination behaviour of some leguminous and actinorhizal plants of Himalaya: Effect of temperature and medium. Trop. Ecol. 48, 99–105 (2007).
    Google Scholar 

    52.
    Dutra, A. S., Medeiros Filho, S., Teófilo, E. M. & Diniz, F. O. Seed germination of Senna siamea (Lam.) H.S. Irwin & Barneby—Caesalpinoideae. Rev. Bras. Sem. 29, 160–164 (2007).
    Google Scholar 

    53.
    Ellis, R. H. et al. Comparative analysis by protocol and key of seed storage behaviour of sixty Vietnamese tree species. Seed Sci. Technol. 35, 460–476 (2007).
    Google Scholar 

    54.
    Mishra, D. K. & Bohra, N. K. Effect of seed pre-treatment and time of sowing on germination and biomass of Cassia angustifolia Vahl. in arid regions. Ann. Arid Zone 55, 29–34 (2016).
    Google Scholar 

    55.
    Rolston, M. P. Water impermeable seed dormancy. Bot. Rev. 44, 365–396 (1978).
    CAS  Google Scholar 

    56.
    Baskin, C. C. Breaking physical dormancy in seeds—focusing on the lens. New Phytol. 158, 229–232 (2003).
    Google Scholar 

    57.
    Burrows, G. E., Alden, R. & Robinson, W. A. The lens in focus—lens structure in seeds of 51 Australian Acacia species and its implications for imbibition and germination. Aust. J. Bot. 66, 398–413 (2018).
    Google Scholar 

    58.
    Deng, W., Jeng, D.-S., Toorop, P. E., Squire, G. R. & Iannetta, P. P. M. A mathematical model of mucilage expansion in myxospermous seeds of Capsella bursa-pastoris (shepherd’s purse). Ann. Bot. 109, 419–427 (2012).
    CAS  PubMed  Google Scholar 

    59.
    Yang, X., Baskin, J. M., Baskin, C. C. & Huang, Z. More than just a coating: Ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect. Plant Ecol. Evol. Syst. 14, 434–442 (2012).
    Google Scholar 

    60.
    Van Klinken, R. D. & Flack, L. Wet heat as a mechanism for dormancy release and germination of seeds with physical dormancy. Weed Sci. 53, 663–669 (2005).
    Google Scholar 

    61.
    Van Klinken, R. D., Flack, L. K. & Pettit, W. Wet-season dormancy release in seed banks of a tropical leguminous shrub is determined by wet heat. Ann. Bot. 98, 875–883 (2006).
    PubMed  Google Scholar 

    62.
    Jayasuriya, K. M. G. G., Baskin, J. M. & Baskin, C. C. Cycling of sensitivity to physical dormancy-break in seeds of Ipomoea lacunosa (Convolvulaceae) and ecological significance. Ann. Bot. 101, 341–352 (2008).
    CAS  PubMed  Google Scholar 

    63.
    Jayasuriya, K. M. G. G., Baskin, J. M., Geneve, R. L. & Baskin, C. C. A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunosa. Ann. Bot. 103, 433–445 (2009).
    PubMed  Google Scholar 

    64.
    Western, T. L. The sticky tale of seed coat mucilages: Production, genetics, and role in seed germination and dispersal. Seed Sci. Res. 22, 1–25 (2012).
    CAS  Google Scholar 

    65.
    Gutterman, Y. & Shem-Tov, S. Structure and function of the mucilaginous seed coats of Plantago coronopus inhabiting the Negev desert of Israel. Isr. J. Plant Sci. 44, 125–133 (1996).
    Google Scholar 

    66.
    Gutterman, Y. & Shem-Tov, S. The efficiency of the strategy of mucilaginous seeds of some common annuals of the Negev adhering to the soil crust to delay collection by ants. Isr. J. Plant Sci. 45, 317–327 (1997).
    Google Scholar 

    67.
    Yang, X., Dong, M. & Huang, Z. Role of mucilage in the germination of Artemisia sphaerocephala (Asteraceae) achenes exposed to osmotic stress and salinity. Plant Physiol. Biochem. 48, 131–135 (2010).
    CAS  PubMed  Google Scholar 

    68.
    Moreno-Casasola, P., Grime, J. P. & Martínez, M. L. A comparative study of the effects of fluctuations in temperature and moisture supply on hard coat dormancy in seeds of coastal tropical legumes in Mexico. J. Trop. Ecol. 10, 67–86 (1994).
    Google Scholar 

    69.
    Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Fire-related cues break seed dormancy of six legumes of tropical eucalypt savannas in north-eastern Australia. Aust. Ecol. 28, 507–514 (2003).
    Google Scholar 

    70.
    Maia, F. V., Messias, M. C. T. B. & Moraes, M. G. Efeitos de tratamentos pré-germinativos na germinação de Chamaecrista dentata (Vogel) H.S. Irwin & Barneby. Floram 17, 44–50 (2010).
    Google Scholar 

    71.
    Fichino, B. S., Dombroski, J. R. G., Pivello, V. R. & Fidelis, A. Does fire trigger seed germination in the Neotropical savanas? Experimental tests with six Cerrado species. Biotropica 48, 181–187 (2016).
    Google Scholar 

    72.
    Daibes, F. L. et al. Fire and legume germination in a tropical savanna: Ecological and historical factors. Ann. Bot. 123, 1219–1229 (2019).
    PubMed  PubMed Central  Google Scholar 

    73.
    Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501–523 (2006).
    CAS  PubMed  Google Scholar 

    74.
    Willis, C. G. et al. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309 (2014).
    PubMed  Google Scholar 

    75.
    Marazzi, B. & Sanderson, M. Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries. Evolution 64, 3570–3592 (2010).
    PubMed  Google Scholar 

    76.
    Acharya, L., Mukherjee, A. K. & Panda, P. C. Separation of the genera in the subtribe Cassiinae (Leguminosae: Caesalpinioideae). Acta Bot. Bras. 25, 223–233 (2011).
    Google Scholar 

    77.
    Scheidegger, N.M.B. & Rando, J.G. Cassia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB22858 (2019).

    78.
    Klink, C. A. & Machado, R. B. Conservation of the Brazilian Cerrado. Conserv. Biol. 19, 707–713 (2005).
    Google Scholar 

    79.
    McDowell, E. M. & Trump, B. F. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100, 405–414 (1976).
    CAS  PubMed  Google Scholar 

    80.
    Robards, A. W. An introduction to techniques for scanning electron microscopy of plant cells. In Electron Microscopy and Cytochemistry of Plant Cells (ed. Hall, J. L.) 343–403 (Elsevier, Amsterdam, 1978).
    Google Scholar 

    81.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2011).

    82.
    Tietema, T., Merkesdal, E. & Schroten, J. Seed Germination of Indigenous Trees in Botswana (ACTS Press, Anaheim, 1992).
    Google Scholar 

    83.
    Watkins, G. Trees and Shrubs for Planting in Tanganyika. (Government Printer, 1960).

    84.
    Martins, C. C., Machado, C. G., Martinelli-Seneme, A. & Zucareli, C. Methods for harvesting and breaking the dormancy of Cassia ferruginea seeds. Semina 33, 491–498 (2012).
    Google Scholar 

    85.
    Moreira, F. M. S. & Moreira, F. W. Características da germinação de sementes de 64 espécies de leguminosas florestais nativas da Amazônia, em condições de viveiro. Acta Amaz. 26, 3–16 (1996).
    Google Scholar 

    86.
    Souza, L. A. G. & Silva, M. F. Tratamentos escarificadores em sementes duras de sete leguminosas nativas da ilha de Maracá, Roraima, Brasil. Bol. Mus. Para. Emílio Goeldi Série botânica 14, 11–32 (1998).
    MathSciNet  Google Scholar 

    87.
    Jaganathan, G. K. Physical dormancy alleviation and soil seed bank establishment in Cassia roxburghii is determined by soil microsite characteristics. Flora 244, 19–23 (2018).
    Google Scholar 

    88.
    Knowles, O. H. & Parrotta, J. A. Amazonian forest restoration: An innovative system for native species selection based on phenological data and field performance indices. Commonw. For. Rev. 74, 230–243 (1995).
    Google Scholar  More

  • in

    Global status and conservation potential of reef sharks

    Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
    M. Aaron MacNeil & Taylor Gorham

    Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
    Demian D. Chapman, Michael Heithaus, Jeremy Kiszka, Mark E. Bond, Kathryn I. Flowers, Gina Clementi, Khadeeja Ali, Laura García Barcia, Erika Bonnema, Camila Cáceres, Naomi F. Farabough, Virginia Fourqurean, Kirk Gastrich, Devanshi Kasana, Yannis P. Papastamatiou, Jessica Quinlan, Maurits van Zinnicq Bergmann & Elizabeth Whitman

    Australian Institute of Marine Science, Townsville, Queensland, Australia
    Michelle Heupel & Leanne M. Currey-Randall

    Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
    Colin A. Simpfendorfer, C. Samantha Sherman, Stacy Bierwagen, Brooke D’Alberto, Lachlan George, Sushmita Mukherji & Audrey Schlaff

    Australian Institute of Marine Science, Crawley, Western Australia, Australia
    Mark Meekan, Conrad W. Speed, Matthew J. Rees & Dianne McLean

    The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
    Mark Meekan, Conrad W. Speed & Dianne McLean

    School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
    Euan Harvey & Jordan Goetze

    Marine Program, Wildlife Conservation Society, New York, NY, USA
    Jordan Goetze

    Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
    Matthew J. Rees

    Australian Institute of Marine Science, Arafura Timor Research Facility, Darwin, Northern Territory, Australia
    Vinay Udyawer

    School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY, USA
    Jasmine Valentin-Albanese, Diego Cardeñosa, Stephen Heck & Bradley Peterson

    International Pole and Line Foundation, Malé, Maldives
    M. Shiham Adam

    Maldives Marine Research Institute, Ministry of Fisheries, Marine Resources and Agriculture, Malé, Maldives
    Khadeeja Ali

    Centro de Investigaciones de Ecosistemas Costeros (CIEC), Cayo Coco, Morón, Ciego de Ávila, Cuba
    Fabián Pina-Amargós

    Centro de Investigaciones Marinas, Universidad de la Habana, Havana, Cuba
    Jorge A. Angulo-Valdés & Alexei Ruiz-Abierno

    Galbraith Marine Science Laboratory, Eckerd College, St Petersburg, FL, USA
    Jorge A. Angulo-Valdés

    Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, HI, USA
    Jacob Asher

    Habitat and Living Marine Resources Program, Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
    Jacob Asher

    Réseau requins des Antilles Francaises, Kap Natirel, Vieux-Fort, Guadeloupe
    Océane Beaufort

    Mahonia Na Dari Research and Conservation Centre, Kimbe, Papua New Guinea
    Cecilie Benjamin

    South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
    Anthony T. F. Bernard

    Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
    Anthony T. F. Bernard

    Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Michael L. Berumen, Jesse E. M. Cochran & Royale S. Hardenstine

    Blue Resources Trust, Colombo, Sri Lanka
    Rosalind M. K. Bown, Daniel Fernando, Nishan Perera & Akshay Tanna

    Bren School of Environmental Sciences and Management, University of California Santa Barbara, Santa Barbara, CA, USA
    Darcey Bradley

    Shark Research and Conservation Program, Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, Bahamas
    Edd Brooks

    Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
    J. Jed Brown

    University of the West Indies, Discovery Bay Marine Laboratory, Discovery Bay, Jamaica
    Dayne Buddo

    Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
    Patrick Burke

    Albion College, Albion, MI, USA
    Jeffrey C. Carrier

    Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
    Jennifer E. Caselle

    Coastal Impact, Quitula, Aldona Bardez, India
    Venkatesh Charloo

    CUFR Mayotte & Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, IRD, IFREMER, Montpellier, France
    Thomas Claverie

    PSL Research University, LABEX CORAIL, CRIOBE USR3278 EPHE-CNRS-UPVD, Mòorea, French Polynesia
    Eric Clua

    Environmental Research Institute Charlotteville, Charlotteville, Trinidad and Tobago
    Neil Cook, Lanya Fanovich & Aljoscha Wothke

    School of Biosciences, Cardiff University, Cardiff, UK
    Neil Cook

    ARC Centre of Excellence in Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
    Jessica Cramp & Joshua E. Cinner

    Sharks Pacific, Rarotonga, Cook Islands
    Jessica Cramp

    Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands
    Martin de Graaf

    Graduate School of Global Environmental Studies, Sophia University, Tokyo, Japan
    Mareike Dornhege

    Waitt Institute, La Jolla, CA, USA
    Andy Estep

    Marine Megafauna Foundation, Truckee, CA, USA
    Anna L. Flam, Andrea Marshall & Alexandra M. Watts

    The South African Association for Marine Biological Research, Oceanographic Research Institute, Durban, South Africa
    Camilla Floros

    Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
    Ricardo Garla

    Independent consultant, Hull, UK
    Rory Graham

    Bimini Biological Field Station Foundation, South Bimini, Bahamas
    Tristan Guttridge & Maurits van Zinnicq Bergmann

    Saving the Blue, Kendall, Miami, FL, USA
    Tristan Guttridge

    Biology Department, College of Science, UAE University, Al Ain, United Arab Emirates
    Aaron C. Henderson

    The School for Field Studies Center for Marine Resource Studies, South Caicos, Turks and Caicos Islands
    Aaron C. Henderson & Heidi Hertler

    Center for Shark Research, Mote Marine Laboratory, Sarasota, FL, USA
    Robert Hueter

    Operation Wallacea, Spilsby, Lincolnshire, UK
    Mohini Johnson

    Wildlife Conservation Society, Melanesia Program, Suva, Fiji
    Stacy Jupiter

    Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
    Steven T. Kessel

    Kenya Fisheries Service, Mombasa, Kenya
    Benedict Kiilu

    Ministry of Fisheries and Marine Resources, Development, Kiritimati, Kiribati
    Taratu Kirata

    Tanzania Fisheries Research Institute, Dar Es Salaam, Tanzania
    Baraka Kuguru

    University of the West Indies, Kingston, Jamaica
    Fabian Kyne

    School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
    Tim Langlois

    Fish Ecology and Conservation Physiology Laboratory, Carleton University, Ottawa, Ontario, Canada
    Elodie J. I. Lédée

    Coral Reef Research Foundation, Koror, Palau
    Steve Lindfield

    Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Colombia
    Andrea Luna-Acosta

    National Institute of Water and Atmospheric Research, Hataitai, New Zealand
    Jade Maggs

    Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    B. Mabel Manjaji-Matsumoto

    Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
    Philip Matich

    Aquarium of the Pacific, Long Beach, CA, USA
    Erin McCombs

    Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, USA
    Llewelyn Meggs

    Department of Biodiversity, Conservation & Attractions, Parks & Wildlife WA, Pilbara Region, Nickol, Western Australia, Australia
    Stephen Moore

    Large Marine Vertebrates Research Institute Philippines, Jagna, The Philippines
    Ryan Murray & Alessandro Ponzo

    Wasage Divers, Wakatobi and Buton, Indonesia
    Muslimin Kaimuddin

    Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, Western Australia, Australia
    Stephen J. Newman & Michael J. Travers

    Island Conservation Society Seychelles, Victoria, Mahé, Seychelles
    Josep Nogués

    CORDIO East Africa, Mombasa, Kenya
    Clay Obota & Melita Samoilys

    The Centre for Ocean Research and Education, Gregory Town, Eleuthera, Bahamas
    Owen O’Shea

    Department of Environment and Geography, University of York, York, UK
    Kennedy Osuka

    Center for Fisheries Research, Ministry for Marine Affairs and Fisheries, Jakarta Utara, Indonesia
    Andhika Prasetyo

    Universitas Dayanu Ikhsanuddin Bau-Bau, Bau-Bau, Indonesia
    L. M. Sjamsul Quamar

    Pristine Seas, National Geographic Society, Washington, DC, USA
    Enric Sala

    Department of Zoology, University of Oxford, Oxford, UK
    Melita Samoilys

    HJR Reefscaping, Boquerón, Puerto Rico
    Michelle Schärer-Umpierre

    SalvageBlue, Kingstown, Saint Vincent and the Grenadines
    Nikola Simpson

    School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
    Adam N. H. Smith

    Indo Ocean Project, PT Nomads Diving Bali, Nusa Penida, Indonesia
    Lauren Sparks

    Manchester Metropolitan University, Manchester, UK
    Akshay Tanna & Alexandra M. Watts

    Reef Check Dominican Republic, Santo Domingo, Dominican Republic
    Rubén Torres

    Institut de Recherche pour le Développement, UMR ENTROPIE (IRD-UR-UNC-CNRS-IFREMER), Nouméa, New Caledonia
    Laurent Vigliola

    Secretariat of the Pacific Regional, Environment Programme, Apia, Samoa
    Juney Ward

    Department of Life Science, Tunghai University, Taichung, Taiwan
    Colin Wen

    School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
    Aaron J. Wirsing

    Corales del Rosario and San Bernardo National Natural Park, GIBEAM Research Group, Universidad del Sinú, Cartagena, Colombia
    Esteban Zarza-Gonzâlez

    D. Chapman and M. Heithaus conceived the study with assistance from M. Heupel, C.A.S., M.M., E.H. and M.A.M. D. Chapman, M. Heithaus, M. Heupel, C.A.S., M.M. and E.H. directed fieldwork run by J.G., J.K., M.E.B., L.M.C.-R., C.W.S., K.I.F., J.V.-A., G.C. and C.S.S. Database management was by T. Gorham. M.A.M. and D. Chapman drafted the manuscript, with help from M. Heithaus, M. Heupel, C.A.S., J.E.M.C., M.M., E.H., J.G., J.K., M.E.B., L.M.C.-R., C.W.S., C.S.S., M.J.R., V.U. and T. Gorham. All other authors contributed equally, made substantial contributions to data collection, provided input and approved the text in the manuscript. More

  • in

    Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat

    1.
    Nesbitt, M. & Samuel, D. Wheat domestication: Archaeobotanical evidence. Science 279, 1431–1431 (1998).
    ADS  Google Scholar 
    2.
    Hammer, K. Das Domestikationssyndrom. Kult. 32, 11–34 (1984).
    Google Scholar 

    3.
    Peleg, Z., Fahima, T., Korol, A. B., Abbo, S. & Saranga, Y. Genetic analysis of wheat domestication and evolution under domestication. J. Exp. Bot. 62, 5051–5061 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Simons, K. J. et al. Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Simonetti, M. C. et al. Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet. Resour. Crop Evol. 46, 267–271 (1999).
    Google Scholar 

    6.
    Tzarfati, R. et al. Threshing efficiency as an incentive for rapid domestication of emmer wheat. Ann. Bot. 112, 829–837 (2013).
    PubMed  PubMed Central  Google Scholar 

    7.
    Matsuoka, Y. Evolution of polyploid triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 52, 750–764 (2011).
    CAS  PubMed  Google Scholar 

    8.
    Araus, J. L., Bort, J., Steduto, P., Villegas, D. & Royo, C. Breeding cereals for Mediterranean conditions: Ecophysiological clues for biotechnology application. Ann. Appl. Biol. 142, 129–141 (2003).
    Google Scholar 

    9.
    Gioia, T. et al. Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. J. Exp. Bot. 66, 5519–5530 (2015).
    CAS  PubMed  Google Scholar 

    10.
    Thuillet, A.-C., Bataillon, T., Poirier, S., Santoni, S. & David, J. L. Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169, 1589 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Haudry, A. et al. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24, 1506–1517 (2007).
    CAS  PubMed  Google Scholar 

    12.
    Pérez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).
    PubMed  Google Scholar 

    13.
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789 (2013).
    CAS  PubMed  Google Scholar 

    14.
    Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).
    CAS  PubMed  Google Scholar 

    15.
    Cook, R. J. et al. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. 92, 4197 (1995).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. 110, 6548 (2013).
    ADS  CAS  PubMed  Google Scholar 

    18.
    İnceoğlu, Ö, Salles, J. F., van Overbeek, L. & van Elsas, J. D. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl. Environ. Microbiol. 76, 3675 (2010).
    PubMed  PubMed Central  Google Scholar 

    19.
    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91 (2012).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Hardoim, P. R. et al. Rice root-associated bacteria: Insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77, 154–164 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Leff, J. W., Lynch, R. C., Kane, N. C. & Fierer, N. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol. 214, 412–423 (2017).
    CAS  PubMed  Google Scholar 

    24.
    Roucou, A. et al. Shifts in plant functional strategies over the course of wheat domestication. J. Appl. Ecol. 55, 25–37 (2018).
    CAS  Google Scholar 

    25.
    Röder, M. S. et al. A microsatellite map of wheat. Genetics 149, 2007 (1998).
    PubMed  PubMed Central  Google Scholar 

    26.
    Berry, D., Ben Mahfoudh, K., Wagner, M. & Loy, A. Barcoded Primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695 (1993).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
    Google Scholar 

    30.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).
    CAS  PubMed  Google Scholar 

    31.
    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Henry, S. et al. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59, 327–335 (2004).
    CAS  PubMed  Google Scholar 

    33.
    Henry, S., Bru, D., Stres, B., Hallet, S. & Philippot, L. Quantitative detection of the nosZ Gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72, 5181 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Jones, C. M., Graf, D. R., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 7, 417 (2012).
    PubMed  PubMed Central  Google Scholar 

    35.
    Bru, D. et al. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J. 5, 532 (2010).
    PubMed  PubMed Central  Google Scholar 

    36.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2013).
    PubMed  PubMed Central  Google Scholar 

    37.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Google Scholar 

    39.
    Caporaso, J. G. et al. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2009).
    PubMed  PubMed Central  Google Scholar 

    40.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    41.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  PubMed  Google Scholar 

    42.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610 (2011).
    PubMed  PubMed Central  Google Scholar 

    43.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  Google Scholar 

    44.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    CAS  PubMed  Google Scholar 

    45.
    Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).
    PubMed  PubMed Central  Google Scholar 

    46.
    A. Singh, et al., DIABLO—An integrative, multi-omics, multivariate method for multi-group classification. bioRxiv, 067611 (2016).

    47.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  Google Scholar 

    48.
    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
    PubMed  Google Scholar 

    49.
    Dreaden, T. J. et al. Development of multilocus PCR assays for Raffaelea lauricola, causal agent of laurel wilt disease. Plant Dis. 98, 379–383 (2013).
    Google Scholar 

    50.
    Takahashi, Y., Matsushita, N. & Hogetsu, T. Spatial distribution of Raffaelea quercivora in xylem of naturally infested and inoculated oak trees. Phytopathology 100, 747–755 (2010).
    PubMed  Google Scholar 

    51.
    Gramaje, D., Armengol, J. & Ridgway, H. J. Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. Eur. J. Plant Pathol. 135, 727–743 (2013).
    Google Scholar 

    52.
    Corradi, N. & Bonfante, P. The arbuscular mycorrhizal symbiosis: Origin and evolution of a beneficial plant infection. PLoS Pathog. 8, e1002600 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Gosling, P., Proctor, M., Jones, J. & Bending, G. D. Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza 24, 1–11 (2014).
    PubMed  Google Scholar 

    55.
    B. D. Emmett, N. D. Youngblut, D. H. Buckley, L. E. Drinkwater, plant phylogeny and life history shape rhizosphere bacterial microbiome of summer annuals in an agricultural field. Front. Microbiol. 8, 2414 (2017).

    56.
    Hernández, M., Dumont, M. G., Yuan, Q. & Conrad, R. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl. Environ. Microbiol. 81, 2244–2253 (2015).
    PubMed  PubMed Central  Google Scholar 

    57.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Oldroyd, G. E. D. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252 (2013).
    CAS  PubMed  Google Scholar 

    59.
    Sikes, B. A. When do arbuscular mycorrhizal fungi protect plant roots from pathogens?. Plant Signal. Behav. 5, 763–765 (2010).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Mimicry of emergent traits amplifies coastal restoration success

    1.
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).
    ADS  CAS  Google Scholar 
    2.
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
    Google Scholar 

    3.
    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. 106, 12377–12381 (2009).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
    PubMed  Google Scholar 

    6.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).
    Google Scholar 

    8.
    Strain, E. M. A. et al. The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean saltmarsh. J. Ecol. 105, 1374–1385 (2017).
    Google Scholar 

    9.
    Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61, 107–116 (2011).
    Google Scholar 

    10.
    Wilkinson, C. Status of Coral Reefs of the World: 2008, Vol. 296 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, 2008).

    11.
    Millennium Ecosystem Assessment. Ecosystems and Human Well-being (Island Press, 2005).

    12.
    Gedan, K. & Silliman, B. Patterns of Salt Marsh Loss within Coastal Regions of North America: Presettlement to Present (University of California Press, Berkeley, 2009).

    13.
    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).
    PubMed  PubMed Central  Google Scholar 

    14.
    Simenstad, C., Reed, D. & Ford, M. When is restoration not?: incorporating landscape-scale processes to restore self-sustaining ecosystems in coastal wetland restoration. Ecol. Eng. 26, 27–39 (2006).
    Google Scholar 

    15.
    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
    PubMed  Google Scholar 

    16.
    Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. 112, 14295–14300 (2015).
    ADS  CAS  PubMed  Google Scholar 

    17.
    van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).
    Google Scholar 

    18.
    Teas, H. J. Ecology and restoration of mangrove shorelines in Florida. Environ. Conserv. 4, 51–58 (1977).
    Google Scholar 

    19.
    Renzi, J. J., He, Q. & Silliman, B. R. Harnessing positive species interactions to enhance coastal wetland restoration. Front. Ecol. Evol. 7 https://doi.org/10.3389/fevo.2019.00131 (2019).

    20.
    Shaver, E. C. & Silliman, B. R. Time to cash in on positive interactions for coral restoration. PeerJ 5, e3499 (2017).
    PubMed  PubMed Central  Google Scholar 

    21.
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).
    Google Scholar 

    22.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Google Scholar 

    23.
    Nock, C. A., Vogt, R. J. & Beisner, B. E. Functional Traits Vol. 10, a0026282 (eLS. John Wiley Sons, Ltd, Chichester, 2016).

    24.
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Vegetation Sci. 9, 113–122 (1998).
    Google Scholar 

    25.
    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
    PubMed  PubMed Central  Google Scholar 

    26.
    Smaldino, P. E. The cultural evolution of emergent group-level traits. Behav. Brain Sci. 37, 243–254 (2014).
    PubMed  Google Scholar 

    27.
    Liu, Q. -X. et al. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014).
    ADS  CAS  PubMed  Google Scholar 

    28.
    Maxwell, P. S. et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems—a review. Biol. Rev. 92, 1521–1538 (2016).
    PubMed  Google Scholar 

    29.
    Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).
    Google Scholar 

    30.
    Balke, T., Herman, P. M. J. & Bouma, T. J. Critical transitions in disturbance-driven ecosystems: identifying Windows of Opportunity for recovery. J. Ecol. 102, 700–708 (2014).
    Google Scholar 

    31.
    Christianen, M. J. A. et al. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 8, e62413 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Lo, V., Bouma, T., Van Belzen, J., Van Colen, C. & Airoldi, L. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea. Mar. Environ. Res. 131, 32–42 (2017).
    CAS  PubMed  Google Scholar 

    33.
    Bouma, T. J. et al. Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology 180-181, 57–65 (2013).
    ADS  Google Scholar 

    34.
    Bouma, T. J. et al. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86, 2187–2199 (2005).
    Google Scholar 

    35.
    Peralta, G., Van Duren, L., Morris, E. & Bouma, T. Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Mar. Ecol. Prog. Ser. 368, 103–115 (2008).
    ADS  Google Scholar 

    36.
    Wolters, M., Bakker, J. P., Bertness, M. D., Jeffries, R. L. & Möller, I. Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. J. Appl. Ecol. 42, 844–851 (2005).
    Google Scholar 

    37.
    Currin, C. A., Chappell, W. S. & Deaton, A. Developing alternative shoreline armoring strategies: The living shoreline approach in North Carolina, in (eds Shipman, H., Dethier, M. N., Gelfenbaum, G., Fresh, K. L. & Dinicola, R. S.), Puget Sound Shorelines and the Impacts of Armoring—Proceedings of a State of the Science Workshop, May 2009: U.S. Geological Survey Scientific Investigations Report 2010-5254, p. 91–102(2010).

    38.
    Herbert, D. et al. Mitigating erosional effects induced by boat wakes with living shorelines. Sustainability 10, 436 (2018).
    Google Scholar 

    39.
    Meyer, D. L., Townsend, E. C. & Thayer, G. W. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restor. Ecol. 5, 93–99 (1997).
    Google Scholar 

    40.
    Baine, M. Artificial reefs: a review of their design, application, management and performance. Ocean Coast. Manag. 44, 241–259 (2001).
    Google Scholar 

    41.
    Graham, P. M., Palmer, T. A. & Beseres Pollack, J. Oyster reef restoration: substrate suitability may depend on specific restoration goals. Restor. Ecol. 25, 459–470 (2017).
    Google Scholar 

    42.
    Bersoza Hernández, A. et al. Restoring the eastern oyster: how much progress has been made in 53 years? Front. Ecol. Environ. 16, 463–471 (2018).
    Google Scholar 

    43.
    Spieler, R. E., Gilliam, D. S. & Sherman, R. L. Artificial substrate and coral reef restoration: what do we need to know to know what we need. Bull. Mar. Sci. 69, 1013–1030 (2001).
    Google Scholar 

    44.
    Morgan, R. P. & Rickson, R. J. Slope Stabilization and Erosion Control: A Bioengineering Approach (Taylor & Francis, 2003).

    45.
    Suykerbuyk, W. et al. Unpredictability in seagrass restoration: analysing the role of positive feedback and environmental stress on Zostera noltii transplants. J. Appl. Ecol. 53, 774–784 (2016).
    Google Scholar 

    46.
    Bouma, T. J., Vries, M. B. D. & Herman, P. M. J. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91, 2696–2704 (2010).
    CAS  PubMed  Google Scholar 

    47.
    De Battisti, D. et al. Intraspecific root trait variability along environmental gradients affects salt marsh resistance to lateral erosion. Front. Ecol. Evol. 7 https://doi.org/10.3389/fevo.2019.00150 (2019).

    48.
    Silliman, B. R. & He, Q. Physical stress, consumer control, and new theory in ecology. Trends Ecol. Evol. 33, 492–503 (2018).
    PubMed  Google Scholar 

    49.
    Manis, J. E., Garvis, S. K., Jachec, S. M. & Walters, L. J. Wave attenuation experiments over living shorelines over time: a wave tank study to assess recreational boating pressures. J. Coast. Conserv. 19, 1–11 (2015).
    Google Scholar 

    50.
    Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7 https://doi.org/10.1038/ncomms12473 (2016).

    51.
    Bos, A. R. & van Katwijk, M. M. Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal eelgrass. Mar. Ecol. Prog. Ser. 336, 121–129 (2007).
    ADS  Google Scholar 

    52.
    Valdez, S. R. et al. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 91 https://doi.org/10.3389/fmars.2020.00091 (2020).

    53.
    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).
    Google Scholar 

    54.
    Romijn, E. et al. Land restoration in Latin America and the Caribbean: an overview of recent, ongoing and planned restoration initiatives and their potential for climate change mitigation. Forests 10, 510 (2019).
    Google Scholar 

    55.
    Broome, S. W., Seneca, E. D. & Woodhouse, W. W. Tidal salt marsh restoration. Aquat. Bot. 32, 1–22 (1988).
    Google Scholar 

    56.
    Pérez-Pagán, B. S. & Mercado-Molina, A. E. Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico. Conserv. Evid. 15, 43–47 (2018).
    Google Scholar 

    57.
    Strain, E. M. A. et al. Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. Ecol. Eng. 120, 637–644 (2018).
    Google Scholar 

    58.
    Cunha, A. H. et al. Changing paradigms in seagrass restoration. Restor. Ecol. 20, 427–430 (2012).
    Google Scholar 

    59.
    Derksen-Hooijberg, M. et al. Mutualistic interactions amplify saltmarsh restoration success. J. Appl. Ecol. 55, 405–414 (2018).
    Google Scholar 

    60.
    Ritchey, T. In 16th Euro Conference on Operational Analysis. Brussels. Online available at http://swemorph.com/pdf/gma.pdf.

    61.
    Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).
    PubMed  PubMed Central  Google Scholar 

    62.
    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).
    CAS  PubMed  Google Scholar 

    63.
    Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).
    CAS  PubMed  Google Scholar 

    64.
    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. BioScience 51, 235–246 (2001).
    Google Scholar 

    65.
    Björk, M., Uku, J., Weil, A. & Beer, S. Photosynthetic tolerances to desiccation of tropical intertidal seagrasses. Mar. Ecol. Prog. Ser. 191, 121–126 (1999).
    ADS  Google Scholar 

    66.
    Silva, J. & Santos, R. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Mar. Ecol. Prog. Ser. 257, 37–44 (2003).
    ADS  Google Scholar 

    67.
    Crotty, S. M. & Bertness, M. D. Positive interactions expand habitat use and the realized niches of sympatric species. Ecology 96, 2575–2582 (2015).
    PubMed  Google Scholar 

    68.
    Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).
    ADS  Google Scholar 

    69.
    Price, J. S. & Whitehead, G. S. Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21, 32–40 (2001).
    Google Scholar 

    70.
    van der Heide, T. et al. Predation and habitat modification synergistically interact to control bivalve recruitment on intertidal mudflats. Biol. Conserv. 172, 163–169 (2014).
    Google Scholar 

    71.
    Schulte, D. M., Burke, R. P. & Lipcius, R. N. Unprecedented restoration of a native oyster metapopulation. Science 325, 1124–1128 (2009).
    ADS  CAS  PubMed  Google Scholar 

    72.
    Stokes, D. J., Healy, T. R. & Cooke, P. J. Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. J. Coast. Res., 113–122 https://doi.org/10.2112/08-1043.1 (2010).

    73.
    Bouma, T. J. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont. Shelf Res. 27, 1020–1045 (2007).
    ADS  Google Scholar 

    74.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 

    76.
    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Statistician 34, 216–221 (2018).
    Google Scholar 

    77.
    R Core Team. R Foundation for Statistical Computing (R Core Team, Vienna, 2014).

    78.
    Schwarz, C. et al. Abiotic factors governing the establishment and expansion of two salt marsh plants in the Yangtze Estuary, China. Wetlands 31, 1011–1021 (2011).
    Google Scholar 

    79.
    Marbà, N. & Duarte, C. M. Rhizome elongation and seagrass clonal growth. Marine Ecology Progress Series 174, 269–280 (1998).
    ADS  Google Scholar 

    80.
    Bastyan, G. R. & Cambridge, M. L. Transplantation as a method for restoring the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science 79, 289–299.

    81.
    Temmink, R. J. M. et al. Data from: mimicry of emergent traits amplifies coastal restoration success. DANS https://doi.org/10.17026/dans-xx2-s4c6 (2020). More

  • in

    Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs

    1.
    Heck, K. L. et al. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11, 1198–1210 (2008).
    Google Scholar 
    2.
    Bakker, E. S., Pagès, J. F., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39, 162–179 (2016).
    Google Scholar 

    3.
    Naiman, R. J. & Rogers, K. H. Large animals and system-level characteristics in river corridors. Bioscience 47, 521–529 (1997).
    Google Scholar 

    4.
    McCarthy, T. S., Ellery, W. N. & Bloem, A. Some observations on the geomorphological impact of hippopotamus (Hippopotamus amphibius L.) in the Okavango Delta, Botswana. Afr. J. Ecol. 36, 44–56 (1998).
    Google Scholar 

    5.
    Deocampo, D. M. Sedimentary structures generated by Hippopotamus amphibius in a lake-margin wetland, Ngorongoro Crater, Tanzania. Palaios 17, 212–217 (2002).
    ADS  Google Scholar 

    6.
    Subalusky, A. L., Dutton, C. L., Rosi-Marshall, E. J. & Post, D. M. The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. Freshw. Biol. 60, 512–525 (2015).
    CAS  Google Scholar 

    7.
    Grey, J. & Harper, D. Using stable isotope analyses to identify allochthonous inputs to Lake Naivasha mediated via the hippopotamus gut. Isotopes Environ. Health Stud. 38, 245–250 (2002).
    CAS  PubMed  Google Scholar 

    8.
    Dawson, J., Pillay, D., Roberts, P. J. & Perissinotto, R. Declines in benthic macroinvertebrate community metrics and microphytobenthic biomass in an estuarine lake following enrichment by hippo dung. Sci. Rep. 6, 37359 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Stears, K. et al. Effects of the hippopotamus on the chemistry and ecology of an ephemeral river. Proc. Natl. Acad. Sci. USA 115, E5028–E5037 (2018).
    CAS  PubMed  Google Scholar 

    10.
    Dutton, C. L., Subalusky, A. L., Hamilton, S. K., Rosi, E. J. & Post, D. M. Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills. Nat. Commun. 9, 1–10 (2018).
    CAS  Google Scholar 

    11.
    Wolanski, E. & Gereta, E. Oxygen cycle in a hippo pool, Serengeti National Park, Tanzania. Afr. J. Ecol. 37, 419–423 (1999).
    Google Scholar 

    12.
    Gereta, E. & Wolanski, E. Wildlife-water quality interactions in the Serengeti National Park, Tanzania. Afr. J. Ecol. 36, 1–14 (1998).
    Google Scholar 

    13.
    McCauley, D. J. et al. Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize aquatic consumers in an East African river. Ecosphere 6, 1–11 (2015).
    Google Scholar 

    14.
    Masese, F. O. et al. Are large herbivores vectors of terrestrial subsidies for riverine food webs?. Ecosystems 18, 686–706 (2015).
    CAS  Google Scholar 

    15.
    Masese, F. O. et al. Trophic structure of an African savanna river and organic matter inputs by large terrestrial herbivores: A stable isotope approach. Freshw. Biol. 63, 1365–1380 (2018).
    CAS  Google Scholar 

    16.
    Jones, R. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229, 73–91 (1992).
    CAS  Google Scholar 

    17.
    Field, C. A study of the feeding habits of the hippopotamus (Hippopotamus amphibius Linn.) in the Queen Elizabeth National Park, Uganda, with some management implications. Zool. Afr. 5, 71–86 (1970).
    Google Scholar 

    18.
    McNaughton, S. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr. 55, 259–294 (1985).
    Google Scholar 

    19.
    Taipale, S. J., Brett, M. T., Pulkkinen, K. & Kainz, M. J. The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. FEMS Microbiol. Ecol. 82, 50–62 (2012).
    CAS  PubMed  Google Scholar 

    20.
    Taipale, S. J. et al. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology 95, 563–576 (2014).
    PubMed  Google Scholar 

    21.
    Wenzel, A., Bergström, A. K., Jansson, M. & Vrede, T. Survival, growth and reproduction of Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. Freshw. Biol. 57, 835–846 (2012).
    CAS  Google Scholar 

    22.
    Guo, F., Kainz, M. J., Sheldon, F. & Bunn, S. E. The importance of high-quality algal food sources in stream food webs – current status and future perspectives. Freshw. Biol. 61, 815–831 (2016).
    CAS  Google Scholar 

    23.
    Cyrus, D., Jerling, H., MacKay, F. & Vivier, L. Lake St Lucia, Africa’s largest estuarine lake in crisis: Combined effects of mouth closure, low levels and hypersalinity. S. Afr. J. Sci. 107, 1–13 (2011).
    Google Scholar 

    24.
    Taylor, R. H. Hippopotamuses. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 355–366 (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    25.
    Iverson, S., Frost, K. & Lowry, L. Fatty acid signatures reveal fine scale structure of foraging distribution of harbor seals and their prey in Prince William Sound, Alaska. Mar. Ecol. Prog. Ser. 151, 255–271 (1997).
    ADS  CAS  Google Scholar 

    26.
    Napolitano, G. E. Fatty acids as trophic and chemical markers in freshwater ecosystems. In Lipids in Freshwater ecosystems (eds Arts, M. T. & Wainman, B. C.) 21–44 (Springer, New York, 1999).
    Google Scholar 

    27.
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mammal Sci. 22, 759–801 (2006).
    Google Scholar 

    28.
    Pasquaud, S., Lobry, J. & Elie, P. Facing the necessity of describing estuarine ecosystems: A review of food web ecology study techniques. Hydrobiologia 588, 159–172 (2007).
    Google Scholar 

    29.
    Parrish, C., Abrajano, T. & Budge, S. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. Handb. Environ. Chem. 5, 193–223 (2000).
    Google Scholar 

    30.
    Budge, S. M., Parrish, C. C. & Mckenzie, C. H. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Mar. Chem. 76, 285–303 (2001).
    CAS  Google Scholar 

    31.
    Dalsgaard, J., St. John, M., Kattner, G., Muller-Navarra, D. & Hagen, W. Fatty acid trophic markers in pelagic marine environment. In Advances in Marine Biology Vol. 46 (eds Southward, A. J. et al.) 225–340 (Academic Press, Cambridge, 2003).
    Google Scholar 

    32.
    Haddad, R. I., Martens, C. S. & Farrington, J. W. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Org. Geochem. 19, 205–216 (1992).
    CAS  Google Scholar 

    33.
    Harvey, H. R. Fatty acids and sterols as source markers of organic matter in sediments of the North Carolina continental slope. Deep Sea Res. 41, 783–796 (1994).
    ADS  CAS  Google Scholar 

    34.
    Brett, M. T., Muller-Navarra, D. C., Ballantyne, A. P., Ravet, J. L. & Goldman, C. R. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51, 2428–2437 (2006).
    ADS  CAS  Google Scholar 

    35.
    Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org. Geochem. 29, 1547–1559 (1998).
    CAS  Google Scholar 

    36.
    Torres-ruiz, M., Wehr, J. D. & Perrone, A. A. Trophic relations in a stream food web : importance of fatty acids for macroinvertebrate consumers. J. North Am. Benthol. Soc. 26, 509–522 (2007).
    Google Scholar 

    37.
    Moyo, S., Chari, L. D., Villet, M. H. & Richoux, N. B. Decoupled reciprocal subsidies of biomass and fatty acids in fluxes of invertebrates between a temperate river and the adjacent land. Aquat. Sci. 79, 689–703 (2017).
    CAS  Google Scholar 

    38.
    Arts, M. T., Ackman, R. G. & Holub, B. J. ‘Essential fatty acids’ in aquatic ecosystems: A crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58, 122–137 (2001).
    CAS  Google Scholar 

    39.
    Brett, M. T. & Muller-Navarra, D. C. The role of highly unsaturated fatty acids in aquatic food web processes. Freshw. Biol. 38, 483–499 (1997).
    CAS  Google Scholar 

    40.
    Müller-Navarra, D. C., Brett, M. T., Liston, A. M. & Goldman, C. R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403, 74–77 (2000).
    ADS  PubMed  Google Scholar 

    41.
    Brett, M. T., Kainz, M. J., Taipale, S. J. & Seshan, H. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA 106, 21197–21201 (2009).
    ADS  CAS  PubMed  Google Scholar 

    42.
    Hixson, S. M., Sharma, B., Kainz, M. J., Wacker, A. & Arts, M. T. Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems. Environ. Rev. 23, 141–424 (2015).
    Google Scholar 

    43.
    Perissinotto, R., Stretch, D. D. & Taylor, R. H. Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    44.
    Whitfield, A. K. & Taylor, R. H. A review of the importance of freshwater inflow to the future conservation of Lake St Lucia. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 838–848 (2009).
    Google Scholar 

    45.
    Humphries, M. S., Green, A. N. & Finch, J. M. Evidence of El Niño driven desiccation cycles in a shallow estuarine lake: The evolution and fate of Africa’s largest estuarine system, Lake St Lucia. Glob. Planet. Change 147, 97–105 (2016).
    ADS  Google Scholar 

    46.
    Perissinotto, R., Carrasco, N. K. & Taylor, R. H. Physico-chemical environment. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 169–186 (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    47.
    Zikhali, V., Tirok, K. & Stretch, D. Sediment resuspension in a shallow lake with muddy substrates: St Lucia, South Africa. Cont. Shelf Res. 108, 112–120 (2015).
    ADS  Google Scholar 

    48.
    Prinsloo, A. S., Pillay, D. & O’Riain, M. J. Multiscale drivers of hippopotamus distribution in the St Lucia Estuary, South Africa. Afr. Zool. https://doi.org/10.1080/15627020.2020.1717377 (2020).
    Article  Google Scholar 

    49.
    Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).
    ADS  Google Scholar 

    50.
    Couch, C. A. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuar. Coast. Shelf Sci. 28, 433–442 (1989).
    ADS  Google Scholar 

    51.
    Carrasco, N. K. & Perissinotto, R. The comparative diet of the dominant zooplankton species in the St Lucia Estuary, South Africa. J. Plankton Res. 33, 479–490 (2011).
    Google Scholar 

    52.
    Indarti, E., Majid, M. I. A., Hashim, R. & Chong, A. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J. Food Compos. Anal. 18, 161–170 (2005).
    CAS  Google Scholar 

    53.
    Richoux, N. B., Jaquemet, S., Bonnevie, B. T., Cherel, Y. & McQuaid, C. D. Trophic ecology of Grey-headed albatrosses from Marion Island, Southern Ocean: insights from stomach contents and diet tracers. Mar. Biol. 157, 1755–1766 (2010).
    Google Scholar 

    54.
    Richoux, N. B. & Froneman, P. W. Trophic ecology of dominant zooplankton and macrofauna in a temperate, oligotrophic South African estuary: A fatty acid approach. Mar. Ecol. Prog. Ser. 357, 121–137 (2008).
    ADS  Google Scholar 

    55.
    Bergamino, L., Dalu, T. & Richoux, N. B. Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses. Hydrobiologia 732, 133–145 (2014).
    CAS  Google Scholar 

    56.
    Richoux, N. B., Bergamino, L., Moyo, S. & Dalu, T. Spatial and temporal variability in the nutritional quality of basal resources along a temperate river/estuary continuum. Org. Geochem. 116, 1–12 (2018).
    CAS  Google Scholar 

    57.
    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual (Plymouth, United Kingdom, 2015).
    Google Scholar 

    58.
    Meziane, T. & Tsuchiya, M. Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan. Mar. Ecol. Prog. Ser. 200, 49–57 (2000).
    ADS  CAS  Google Scholar 

    59.
    Kharlamenko, V. I., Kiyashko, S. I., Imbs, A. B. & Vyshkvartzev, D. I. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Mar. Ecol. Prog. Ser. 220, 103–117 (2001).
    ADS  CAS  Google Scholar 

    60.
    Hall, D., Lee, S. Y. & Meziane, T. Fatty acids as trophic tracers in an experimental estuarine food chain: Tracer transfer. J. Exp. Mar. Bio. Ecol. 336, 42–53 (2006).
    CAS  Google Scholar 

    61.
    Blaber, S. J. M. Tropical Estuarine Fishes. Ecology, Exploitation and Conservation (Blackwell Science Ltd., New York, 2000).
    Google Scholar 

    62.
    Cyrus, D. P. Fish and Fisheries. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 291–315 (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    63.
    Pillay, D., Bownes, S. J. & Nel, H. A. Benthic Invertebrates. In Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model (eds Perissinotto, R. et al.) 227–245 (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    64.
    Cyrus, D. & Vivier, L. Status of the estuarine fish fauna in the St Lucia estuarine system, South Africa, after 30 months of mouth closure. Afr. J. Aquat. Sci. 31, 71–81 (2006).
    Google Scholar 

    65.
    Meziane, T., Bodineau, L., Retiere, C. & Thoumelin, G. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. J. Sea Res. 38, 47–58 (1997).
    ADS  Google Scholar 

    66.
    Steinke, T. O. & Ward, C. J. Litter production by mangroves. II. St Lucia and Richards Bay. S. Afr. J. Bot. 54, 445–454 (1988).
    Google Scholar 

    67.
    Adams, J. B. & Human, L. R. D. Investigation into the mortality of mangroves at St. Lucia Estuary. S. Afr. J. Bot. 107, 121–128 (2016).
    Google Scholar 

    68.
    Mbande, S., Froneman, W. & Whitfield, A. K. The primary carbon sources utilised by fishes in the Mngazi and Mngazana estuaries, South Africa: A preliminary assessment. Afr. J. Aquat. Sci. 29, 195–204 (2004).
    Google Scholar 

    69.
    Whitfield, A. K. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish Biol. Fish. 27, 75–110 (2017).
    Google Scholar 

    70.
    Wakeham, S. G. & Canuel, E. A. Fatty acids and sterols of particulate matter in a brackish and seasonally anoxic coastal salt pond. Org. Geochem. 16, 703–713 (1990).
    CAS  Google Scholar 

    71.
    Degerman, R. et al. Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. Hydrobiologia 805, 131–146 (2018).
    CAS  Google Scholar 

    72.
    Lewison, R. Population responses to natural and human-mediated disturbances: Assessing the vulnerability of the common hippopotamus (Hippopotamus amphibius). Afr. J. Ecol. 45, 407–415 (2007).
    Google Scholar 

    73.
    Lewison, R. & Pluháček, J. Hippopotamus amphibius. IUCN Red List Threatened Species. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T10103A18567364.en (2017).
    Article  Google Scholar 

    74.
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl. Acad. Sci. USA 113, 868–873 (2016).
    ADS  CAS  PubMed  Google Scholar  More

  • in

    An osmolality/salinity-responsive enhancer 1 (OSRE1) in intron 1 promotes salinity induction of tilapia glutamine synthetase

    1.
    Fiol, D. F. & Kültz, D. Osmotic stress sensing and signaling in fishes. FEBS J. 274, 5790–5798 (2007).
    CAS  PubMed  Google Scholar 
    2.
    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Turner, G. F. Adaptive radiation of cichlid fish. Curr. Biol. 17, R827–R831 (2007).
    CAS  PubMed  Google Scholar 

    4.
    Fiess, J. C. et al. Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 252–264 (2007).
    PubMed  Google Scholar 

    5.
    Kültz, D. & Onken, H. Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: two different strategies in mastering hypertonic stress. Mar. Biol. 117, 527–533 (1993).
    Google Scholar 

    6.
    Moorman, B. P., Lerner, D. T., Grau, E. G. & Seale, A. P. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity. J. Exp. Biol. 218, 731–739 (2015).
    PubMed  Google Scholar 

    7.
    Breves, J. P. et al. Acute salinity challenges in Mozambique and Nile tilapia: Differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters. Gen. Comp. Endocrinol. 167, 135–142 (2010).
    CAS  PubMed  Google Scholar 

    8.
    Gardell, A. M. et al. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis. J. Exp. Biol. 216, 4615–4625 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Kammerer, B. D., Cech, J. J. & Kültz, D. Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157, 260–265 (2010).
    PubMed  Google Scholar 

    10.
    Kültz, D., Bastrop, R., Jürss, K. & Siebers, D. Mitochondria-rich (MR) cells and the activities of the Na+K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities. Comp. Biochem. Physiol. B Comp. Biochem. 102, 293–301 (1992).
    Google Scholar 

    11.
    Sacchi, R., Gardell, A. M., Chang, N. & Kültz, D. Osmotic regulation and tissue localization of the myo-inositol biosynthesis pathway in tilapia (Oreochromis mossambicus) larvae. J. Exp. Zool. A Ecol. Genet. Physiol. 321, 457–466 (2014).
    CAS  PubMed  Google Scholar 

    12.
    Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).
    CAS  PubMed  Google Scholar 

    13.
    Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2011).
    PubMed  Google Scholar 

    14.
    Ong, C.-T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Dickel, D. E., Visel, A. & Pennacchio, L. A. Functional anatomy of distant-acting mammalian enhancers. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20120359 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Rim, J. S. et al. Transcription of the sodium/myo-inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5′-flanking region. J. Biol. Chem. 273, 20615–20621 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Wang, X. & Kültz, D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc. Natl. Acad. Sci. USA 114, E2729–E2738 (2017).
    CAS  PubMed  Google Scholar 

    19.
    Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A. & Bejerano, G. Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Smith, A. N. et al. A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J. Biol. Chem. 271, 9947–9954 (1996).
    CAS  PubMed  Google Scholar 

    21.
    Cleves, P. A. et al. An intronic enhancer of Bmp6 underlies evolved tooth gain in sticklebacks. PLoS Genet. 14, e1007449 (2018).
    PubMed  PubMed Central  Google Scholar 

    22.
    Veauvy, C. M. et al. Ammonia affects brain nitrogen metabolism but not hydration status in the Gulf toadfish (Opsanus beta). Aquat. Toxicol. 74, 32–46 (2005).
    CAS  PubMed  Google Scholar 

    23.
    Essex-Fraser, P. A. et al. Expression of four glutamine synthetase genes in the early stages of development of rainbow trout (Oncorhynchus mykiss) in relationship to nitrogen excretion. J. Biol. Chem. 280, 20268–20273 (2005).
    CAS  PubMed  Google Scholar 

    24.
    Webb, J. T. & Brown, G. W. Some properties and occurrence of glutamine synthetase in fish. Comp. Biochem. Physiol. B 54, 171–175 (1976).
    CAS  PubMed  Google Scholar 

    25.
    Chew, S. F. et al. Intestinal osmoregulatory acclimation and nitrogen metabolism in juveniles of the freshwater marble goby exposed to seawater. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 180, 511–520 (2010).
    CAS  Google Scholar 

    26.
    Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005).
    CAS  PubMed  Google Scholar 

    27.
    Tok, C. Y. et al. Glutamine accumulation and up-regulation of glutamine synthetase activity in the swamp eel, Monopterus albus (Zuiew), exposed to brackish water. J. Exp. Biol. 212, 1248–1258 (2009).
    CAS  PubMed  Google Scholar 

    28.
    Kopp, R. E. et al. Usable science for managing the risks of sea-level rise. Earths Future 7, 1235–1269 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    29.
    Savenije, H. H. G. Salinity and Tides in Alluvial Estuaries 1st edn. (Elsevier, Amsterdam, 2005).
    Google Scholar 

    30.
    Kültz, D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 218, 1907–1914 (2015).
    PubMed  Google Scholar 

    31.
    Wedderburn, S. D., Barnes, T. C. & Hillyard, K. A. Shifts in fish assemblages indicate failed recovery of threatened species following prolonged drought in terminating lakes of the Murray-Darling Basin, Australia. Hydrobiologia 730, 179–190 (2014).
    CAS  Google Scholar 

    32.
    Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: causes, effects and prospects – introduction to the theme issue. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20080002 (2019).
    Google Scholar 

    33.
    Aquaculture Genomics, Genetics and Breeding Workshop et al. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genom. 18, 191 (2017).
    Google Scholar 

    34.
    Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 91, 145–155 (2017).
    CAS  PubMed  Google Scholar 

    35.
    Kutach, A. K. & Kadonaga, J. T. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol. Cell. Biol. 20, 4754–4764 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).
    CAS  PubMed  Google Scholar 

    37.
    Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Zomorodipour, A., Jahromi, E. M., Ataei, F. & Valimehr, S. Position dependence of an enhancer activity of the human beta-globin intron-ii, within a heterologous gene. J. Mol. Med. Ther. 1, 19–24 (2017).
    Google Scholar 

    39.
    Marshall, W. S. Osmoregulation in estuarine and intertidal fishes. In Fish Physiology, Vol. 32 (eds McCormick, S. D. et al.) 395–434 (Academic Press, Boca Raton, 2012).
    Google Scholar 

    40.
    Sacchi, R., Li, J., Villarreal, F., Gardell, A. M. & Kültz, D. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium. J. Exp. Biol. 216, 4626–4638 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Kalujnaia, S. et al. Seawater acclimation and inositol monophosphatase isoform expression in the European eel (Anguilla anguilla) and Nile tilapia (Orechromis niloticus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R369–R384 (2013).
    CAS  PubMed  Google Scholar 

    42.
    Gardell, A. M., Qin, Q., Rice, R. H., Li, J. & Kültz, D. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines. PLoS ONE 9, e95919 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    43.
    Diamond, J. Quantitative evolutionary design. J. Physiol. 542, 337–345 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Takenaka, M., Preston, A. S., Kwon, H. M. & Handler, J. S. The tonicity-sensitive element that mediates increased transcription of the betaine transporter gene in response to hypertonic stress. J. Biol. Chem. 269, 29379–29381 (1994).
    CAS  PubMed  Google Scholar 

    45.
    Ferraris, J. D. et al. ORE, a eukaryotic minimal essential osmotic response element the aldose reductase gene in hyperosmotic stress. J. Biol. Chem. 271, 18318–18321 (1996).
    CAS  PubMed  Google Scholar 

    46.
    Bai, L. et al. Characterization of cis-elements required for osmotic response of rat Na(+)/H(+) exchanger-2 (NHE-2) gene. Am. J. Physiol. 277, R1112-1119 (1999).
    CAS  PubMed  Google Scholar 

    47.
    Ko, B. C. B., Ruepp, B., Bohren, K. M., Gabbay, K. H. & Chung, S. S. M. Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene. J. Biol. Chem. 272, 16431–16437 (1997).
    CAS  PubMed  Google Scholar 

    48.
    Takeuchi, K., Toyohara, H., Kinoshita, M. & Sakaguchi, M. Role of taurine in hyperosmotic stress response of fish cells. Fish. Sci. 68, 1177–1180 (2002).
    Google Scholar 

    49.
    Takeuchi, K., Toyohara, H., Kinoshita, M. & Sakaguchi, M. Ubiquitous increase in taurine transporter mRNA in tissues of tilapia (Oreochromis mossambicus) during high-salinity adaptation. Fish Physiol. Biochem. 23, 173–182 (2000).
    CAS  Google Scholar 

    50.
    Ozasa, H. & Gould, K. G. Protective effect of taurine from osmotic stress on chimpanzee spermatozoa. Arch. Androl. 9, 121–126 (1982).
    CAS  PubMed  Google Scholar 

    51.
    Foskett, J. K., Bern, H. A., Machen, T. E. & Conner, M. Chloride cells and the hormonal control of teleost fish osmoregulation. J. Exp. Biol. 106, 255–281 (1983).
    CAS  PubMed  Google Scholar 

    52.
    Rose, A. B. Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8, 1444–1453 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Wang, B. et al. Functional analysis of the promoter region of Japanese flounder (Paralichthys olivaceus) β-actin gene: a useful tool for gene research in marine fish. Int. J. Mol. Sci. 19, 1401 (2018).
    PubMed Central  Google Scholar 

    54.
    Bates, N. P. & Hurst, H. C. An intron 1 enhancer element mediates oestrogen-induced suppression of ERBB2 expression. Oncogene 15, 473–481 (1997).
    CAS  PubMed  Google Scholar 

    55.
    Bruhat, A. et al. Regulatory elements in the first intron contribute to transcriptional regulation of the beta 3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Nucleic Acids Res. 18, 2861–2867 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Gallegos, J. E. & Rose, A. B. The enduring mystery of intron-mediated enhancement. Plant Sci. 237, 8–15 (2015).
    CAS  PubMed  Google Scholar 

    57.
    Tourmente, S. et al. Enhancer and silencer elements within the first intron mediate the transcriptional regulation of the beta 3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Insect Biochem. Mol. Biol. 23, 137–143 (1993).
    CAS  PubMed  Google Scholar 

    58.
    Lis, M. & Walther, D. The orientation of transcription factor binding site motifs in gene promoter regions: does it matter?. BMC Genom. 17, 185 (2016).
    Google Scholar 

    59.
    Kumada, Y. et al. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc. Natl. Acad. Sci. USA 90, 3009–3013 (1993).
    ADS  CAS  PubMed  Google Scholar 

    60.
    Woo, S. K., Dahl, S. C., Handler, J. S. & Kwon, H. M. How Salt Regulates Genes: Function of a Rel-like Transcription Factor TonEBP. Am. J. Physiol. Ren. Physiol. 278, F1006-1012 (2000).
    CAS  Google Scholar 

    61.
    Cheung, C. Y. & Ko, B. C. NFAT5 in cellular adaptation to hypertonic stress—regulations and functional significance. J. Mol. Signal 8, 5 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Lorgen, M., Jorgensen, E. H., Jordan, W. C., Martin, S. A. M. & Hazlerigg, D. G. NFAT5 genes are part of the osmotic regulatory system in Atlantic salmon (Salmo salar). Mar. Genom. 31, 25–31 (2017).
    Google Scholar 

    63.
    López-Rodrı́guez, C. et al. Bridging the NFAT and NF-κB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 15, 47–58 (2001).
    PubMed  Google Scholar 

    64.
    Fiol, D. F. & Kültz, D. Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc. Natl. Acad. Sci. USA 102, 927–932 (2005).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Gelev, V. et al. A new paradigm for transcription factor TFIIB functionality. Sci. Rep. 4, 3664 (2014).
    PubMed  PubMed Central  Google Scholar 

    66.
    Kato, M., Hata, N., Banerjee, N., Futcher, B. & Zhang, M. Q. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5, R56 (2004).
    PubMed  PubMed Central  Google Scholar 

    67.
    Mandriani, B. et al. Identification of p53-target genes in Danio rerio. Sci. Rep. 6, 32474 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Pino, L. K. et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2017).
    ADS  MathSciNet  PubMed  Google Scholar 

    69.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). https://www.R-project.org.

    70.
    Sharma, V. et al. Panorama: a targeted proteomics knowledge base. J. Proteome Res. 13, 4205–4210 (2014).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    The closed eye harbours a unique microbiome in dry eye disease

    Cohort
    Based on the power and pairwise sample-size estimator for permutational multivariate analysis of variance (PERMANOVA) application Micropower14, a low abundance 16S rRNA dataset similar to previous ocular microbiome studies12 would require a minimal sample size of 30 to generate a discriminatory power of 0.8 with a significance level of 0.05. Therefore, we aimed for at least 35 subjects per study arm. Table 1 shows the demographics and clinical characteristics of the enrolled participants. Based on a post-enrolment exam and two clinical surveys, after informed consent, participants were classified as dry eye or controls (Supplemental S1). The resulting 36 control and 36 dry eye subjects were then stratified by clinical severity of eye disease (Fig. 1 and Supplemental Table 1). The study arms were randomized to daily saline eye wash upon awakening or non-intervention. A baseline closed eye tear sample was collected at randomization and the final sample after one month, yielding 144 samples. We did not observe significant differences between the stratifications normal versus mild and moderate versus severe with respect to microbial ecology (Fig. 2), however clear separation was present between the mild and moderate samples, indicating this more granular stratification introduced a false dichotomy in the data. Therefore, we combined subjects stratified as none or mild into one cohort, now termed normal, and we combined subjects stratified as moderate or severe into another cohort, now termed dry eye (Fig. 3). We used this simplified stratification system for all subsequent analyses (Methods).
    Table 1 Participant demographics and clinical characteristics.
    Full size table

    Figure 1

    Subjects were allocated, stratified and randomized to treatment or control. Schematic of collection of closed eye tears in sterile saline, followed by 16S rRNA metabarcoding of the bacterial microbiome. Diagram of subject allocation and randomization. Figure generated with BioRender.

    Full size image

    Figure 2

    Patients with dry eye disease have a different closed eye microbiome. (a) Individuals with dry eye disease have different alpha diversity of the closed eye microbiome as quantified by the richness (ANOVA, f = 4.8, P = 7.5 × 10−5), evenness (ANOVA, f = 13, P = 2.1 × 10−12) and Shannon diversity (ANOVA, f = 12, P = 5.9 × 10−12) indices. (b) The beta diversity of the closed eye microbiome in individuals with dry eye disease is distinct by principal coordinate analysis (PCoA) of Bray–Curtis dissimilarity (R2 = 0.21 P = 0.00033), redundancy analysis (RDA, variance = 95.25, f = 3.71, P = 0.001) and canonical correspondence analysis (CCA, chi2 = 0.16 f = 3.64 P = 0.001). (c) Relative abundance of bacterial orders. Log2(CSS), log2 transformation of cumulative-sum scaling. Two-way ANOVA, *P = 0.01, **P = 0.001, ***P = 0.0001. (d) Spearman network analysis at the operational taxonomic unit level. Positive correlations with a P value More

  • in

    Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil

    1.
    IBGE. (ed Desenvolvimento e Gestão Instituto Brasileiro de Geografia e Estatística—Ministério do Planejamento) 108 (Ministério do Planejamento, Desenvolvimento e Gestão, Rio de Janeiro, RJ, 2018).
    2.
    Dias-Filho, M. B. Diagnóstico das Pastagens no Brasil. 36 (Embrapa Amazônia Oriental, Belém, 2014).
    Google Scholar 

    3.
    Ferraz, J. B. & Felicio, P. E. Production systems—an example from Brazil. Meat Sci. 84, 238–243. https://doi.org/10.1016/j.meatsci.2009.06.006 (2010).
    Article  PubMed  Google Scholar 

    4.
    Dias-Filho, M. B. Os desafios da produção animal em pastagens na fronteira agrícola brasileira. Revista Brasileira de Zootecnia 40, 243–252 (2011).
    Google Scholar 

    5.
    Murgueitio, E., Calle, Z., Uribe, F., Calle, A. & Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 261, 1654–1663. https://doi.org/10.1016/j.foreco.2010.09.027 (2011).
    Article  Google Scholar 

    6.
    Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 76, 1–10. https://doi.org/10.1007/s10457-009-9229-7 (2009).
    Article  Google Scholar 

    7.
    Leme, T., Pires, M. D. A., Verneque, R. D., Alvim, M. J. & Aroeira, L. J. M. Behavior of holstein x zebu crossbreed cows grazing Brachiaria decumbens in a silvipastoral system. Cienc. Agrotecnol. 29, 668–675. https://doi.org/10.1590/s1413-70542005000300023 (2005).
    Article  Google Scholar 

    8.
    Stern, V. M., Adkisson, P. L., G., O. B. & Viktorov, G. A. In Theory and Practice of Biological Control (eds C.B. Huffaker & P.S. Messenger) 593–613 (Academic Press, Cambridge, 1976).

    9.
    Arellano, L., León-Cortés, J. L., Halffter, G. & Montero, J. Acacia woodlots, cattle and dung beetles (Coleoptera: Scarabaeinae) in a Mexican silvopastoral landscape. Rev. Mexicana Biodivers. 84, 650–660. https://doi.org/10.7550/rmb.32911 (2013).
    Article  Google Scholar 

    10.
    Auad, A. M., Carvalho, C. A., Clemente, M. A. & Prezoto, F. Diversity of social wasps (Hymenoptera) in a silvipastoral system. Sociobiology 55, 627–636 (2010).
    Google Scholar 

    11.
    Auad, A. M. & de Carvalho, C. A. Faunistic analysis of beetles (coleoptera) in a silvopastoral system. Cienc. Florest. 21, 31–39 (2011).
    Article  Google Scholar 

    12.
    Auad, A. M., Resende, T. T., da Silva, D. M. & das Graças Fonseca, M. Hymenoptera (Insecta: Hymenoptera) associated with silvopastoral systems. Agrofor. Syst. 85, 113–119. https://doi.org/10.1007/s10457-011-9449-5 (2012).
    Article  Google Scholar 

    13.
    Giraldo, C., Escobar, F., Chará, J. D. & Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv. Divers. 4, 115–122. https://doi.org/10.1111/j.1752-4598.2010.00112.x (2011).
    Article  Google Scholar 

    14.
    Jerrentrup, J. S., Wrage-Mönnig, N., Röver, K.-U., Isselstein, J. & McKenzie, A. Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. J. Appl. Ecol. 51, 968–977. https://doi.org/10.1111/1365-2664.12244 (2014).
    Article  Google Scholar 

    15.
    Auad, A. M. et al. Does the silvopastoral system alter hymenopteran fauna (Insecta: Hymenoptera) in Brachiaria decumbens monocultures?. Ann. Entomol. Soc. Am. 108, 468–473. https://doi.org/10.1093/aesa/sav035 (2015).
    Article  Google Scholar 

    16.
    Wink, C., Guedes, J. V. C., Fagundes, C. K. & Rovedder, A. P. Insetos edáficos como indicadores de qualidade ambiental. Revista de Ciências Agroveterinárias 4, 60–71 (2005).
    Google Scholar 

    17.
    Santos, M. S. et al. Riqueza de formigas (Hymenoptera, Formicidae) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringia Série Zool. 96, 95–101 (2006).
    Article  Google Scholar 

    18.
    Huber, J. T. In Insect Biodiversity (eds Robert, G. F. & Peter, H. A.) 419–462 (Wiley-Blackwell, Hoboken, 2017).

    19.
    Barbieri, C. A. & Dias, A. M. P. Braconidae (Hymenoptera) fauna in native, degraded and restoration areas of the Vale do Paraiba, Sao Paulo state, Brazil. Braz. J. Biol. 72, 305–310. https://doi.org/10.1590/s1519-69842012000200011 (2012).
    Article  Google Scholar 

    20.
    Morato, E. F. Efeitos da fragmentação florestal sobre vespas e abelhas solitárias na Amazônia Central. II. Estratificação vertical. Revista Brasileira de Zoologia 18, 737–747 (2001).
    Article  Google Scholar 

    21.
    Morato, E. F. & Campos, L. A. D. O. Efeitos da fragmentação florestal sobre vespas e abelhas solitárias em uma área da Amazônia Central. Rev. Bras. Zool. 17, 429–444 (2000).
    Article  Google Scholar 

    22.
    Rocha, W. D. O., Dorval, A., Peres Filho, O., Vaez, C. D. A. & Ribeiro, E. S. Formigas (Hymenoptera: Formicidae) Bioindicadoras de Degradação Ambiental em Poxoréu, Mato Grosso, Brasil. Floresta e Ambiente 22, 88–98. https://doi.org/10.1590/2179-8087.0049 (2015).
    Article  Google Scholar 

    23.
    Cosenza, G. W., Andrade, R. P. D., Gomes, D. T. & Rocha, C. M. C. D. Resistência de gramíneas forrageiras à cigarrinha-das-pastagens. Pesqui. Agropecu. Bras. 24, 961–968 (1989).
    Google Scholar 

    24.
    Hewitt, G. B. Grazing management as a means of regulating spittlebug (homoptera: cercopidae) numbers in central Brazil. Pesqui. Agropecu. Bras. 23, 697–707 (1988).
    Google Scholar 

    25.
    Souza, J. C., Silva, R. A., Reis, P. R., Queiroz, D. S. & Silva, D. B. Cigarrinhas das pastagens: histórico, bioecologia, prejuízos, monitoramento e medidas de controle. 8 (Epamig, Belo Horizonte, 2008).

    26.
    Aguirre, L. M., Cardona, C., Miles, J. W. & Sotelo, G. Characterization of resistance to adult spittlebugs (Hemiptera: Cercopidae) in Brachiaria spp.. J. Econ. Entomol. 106, 1871–1877. https://doi.org/10.1603/ec11189 (2013).
    Article  PubMed  Google Scholar 

    27.
    Shi, L., Feng, W., Xu, J. & Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 29, 3886–3897. https://doi.org/10.1002/ldr.3136 (2018).
    Article  Google Scholar 

    28.
    Kruess, A. & Tscharntke, T. Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv. Biol. 16, 1570–1580. https://doi.org/10.1046/j.1523-1739.2002.01334.x (2002).
    Article  Google Scholar 

    29.
    Nemec, K. T. & Bragg, T. B. Plant-feeding hemiptera and orthoptera communities in native and restored mesic tallgrass prairies. Restor. Ecol. 16, 324–335. https://doi.org/10.1111/j.1526-100X.2007.00306.x (2008).
    Article  Google Scholar 

    30.
    Moir, M. L., Brennan, K. E. C., Koch, J. M., Majer, J. D. & Fletcher, M. J. Restoration of a forest ecosystem: The effects of vegetation and dispersal capabilities on the reassembly of plant-dwelling arthropods. For. Ecol. Manag. 217, 294–306. https://doi.org/10.1016/j.foreco.2005.06.012 (2005).
    Article  Google Scholar 

    31.
    Cajaiba, R. L. Seasonal patterns in the diversity of histerid beetles (Histeridae) are ecosystem specific? A case in Para State, Northern Brazil. Appl. Ecol. Environ. Res. 15, 1227–1237. https://doi.org/10.15666/aeer/1504_12271237 (2017).
    Article  Google Scholar 

    32.
    Garcia-Martinez, M. A. et al. Taxonomic, species and functional group diversity of ants in a tropical anthropogenic landscape. Trop. Conserv. Sci. 8, 1017–1032. https://doi.org/10.1177/194008291500800412 (2015).
    Article  Google Scholar 

    33.
    Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253–260. https://doi.org/10.1016/j.ecolecon.2007.02.024 (2007).
    Article  Google Scholar 

    34.
    Schweiger, O. et al. Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 116, 461–472. https://doi.org/10.1111/j.2007.0030-1299.15372.x (2007).
    Article  PubMed  Google Scholar 

    35.
    Marchao, R. L. et al. Soil macrofauna under integrated crop-livestock systems in a Brazilian Cerrado Ferralsol. Pesqui. Agropecu. Bras. 44, 1011–1020. https://doi.org/10.1590/s0100-204×2009000800033 (2009).
    Article  Google Scholar 

    36.
    Tidon-Sklorz, R. & Sene, F. D. M. Vertical and temporal distribution of Drosophila (Diptera, Drosophilidae) species in a wooded area in the State of São Paulo, Brazil. Rev. Bras. Biol. 52, 311–317 (1992).
    Google Scholar 

    37.
    Medeiros, H. R. et al. Non-crop habitats modulate alpha and beta diversity of flower flies (Diptera, Syrphidae) in Brazilian agricultural landscapes. Biodivers. Conserv. 27, 1309–1326. https://doi.org/10.1007/s10531-017-1495-5 (2017).
    Article  Google Scholar 

    38.
    Schirmel, J. et al. Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland. J. Appl. Ecol. 55, 1747–1758. https://doi.org/10.1111/1365-2664.13095 (2018).
    Article  Google Scholar 

    39.
    Ricarte, A., Ángeles Marcos-García, M. & Moreno, C. E. Assessing the effects of vegetation type on hoverfly (Diptera: Syrphidae) diversity in a Mediterranean landscape: Implications for conservation. J. Insect Conserv. 15, 865–877. https://doi.org/10.1007/s10841-011-9384-9 (2011).
    Article  Google Scholar 

    40.
    Letourneau, D. K., Allen, S. G. B. & Stireman, J. O. Perennial habitat fragments, parasitoid diversity and parasitism in ephemeral crops. J. Appl. Ecol. 49, 1405–1416. https://doi.org/10.1111/1365-2664.12001 (2012).
    Article  Google Scholar 

    41.
    Giménez Gómez, V. C. et al. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv. Divers. 11, 554–564. https://doi.org/10.1111/icad.12299 (2018).
    Article  Google Scholar 

    42.
    Emerich, P., Valadao, H., Silva, J. & Tidon, R. High abundance of neotropical drosophilids (Diptera: Drosophilidae) in four cultivated areas of central Brazil. Neotrop. Entomol. 41, 83–88. https://doi.org/10.1007/s13744-011-0004-x (2012).
    Article  PubMed  Google Scholar 

    43.
    Furtado, I. S. & Martins, M. B. The impacts of land use intensification on the assembly of drosophilidae (Diptera). Glob. Ecol. Conserv. 16, e00432. https://doi.org/10.1016/j.gecco.2018.e00432 (2018).
    Article  Google Scholar 

    44.
    Eo, J., Kim, M.-H., Na, Y.-E., Oh, Y.-J. & Park, S. Abiotic effects on the distributions of major insect species in agricultural fields. Entomol. Res. 47, 160–166. https://doi.org/10.1111/1748-5967.12207 (2017).
    Article  Google Scholar 

    45.
    Alignan, J.-F., Debras, J.-F. & Dutoit, T. Effects of ecological restoration on Orthoptera assemblages in a Mediterranean steppe rangeland. J. Insect Conserv. 18, 1073–1085. https://doi.org/10.1007/s10841-014-9717-6 (2014).
    Article  Google Scholar 

    46.
    Kuppler, J., Fricke, J., Hemp, C., Steffan-Dewenter, I. & Peters, M. K. Conversion of savannah habitats to small-scale agriculture affects grasshopper communities at Mt. Kilimanjaro, Tanzania. J. Insect Conserv. 19, 509–518. https://doi.org/10.1007/s10841-015-9772-7 (2015).
    Article  Google Scholar 

    47.
    Poniatowski, D. & Fartmann, T. The classification of insect communities: Lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur. J. Entomol. 105, 659–671. https://doi.org/10.14411/eje.2008.090 (2008).
    Article  Google Scholar 

    48.
    Vieira, L., Nascimento, P. K. S. & Leivas, F. W. T. Habitat association promotes diversity of histerid beetles (Coleoptera: Histeridae) in neotropical ecosystems. Coleopt. Bull. 72, 541–549. https://doi.org/10.1649/0010-065x-72.3.541 (2018).
    Article  Google Scholar 

    49.
    Martinez-Falcon, A. P., Zurita, G. A., Ortega-Martinez, I. J. & Moreno, C. E. Populations and assemblages living on the edge: Dung beetles responses to forests-pasture ecotones. PeerJ 6, e6148. https://doi.org/10.7717/peerj.6148 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    da Mata, R. A., McGeoch, M. & Tidon, R. Drosophilid assemblages as a bioindicator system of human disturbance in the Brazilian Savanna. Biodivers. Conserv. 17, 2899–2916. https://doi.org/10.1007/s10531-008-9403-7 (2008).
    Article  Google Scholar 

    51.
    Parsons, P. A. Biodiversity conservation under global climatic-change—the insect Drosophila as a biological indicator. Glob. Ecol. Biogeogr. Lett. 1, 77–83. https://doi.org/10.2307/2997493 (1991).
    Article  Google Scholar 

    52.
    Popov, S. et al. Phytophagous hoverflies (Diptera: Syrphidae) as indicators of changing landscapes. Community Ecol. 18, 287–294. https://doi.org/10.1556/168.2017.18.3.7 (2017).
    Article  Google Scholar 

    53.
    Sommaggio, D. & Burgio, G. The use of Syrphidae as functional bioindicator to compare vineyards with different managements. Bull. Insectol. 67, 147–156 (2014).
    Google Scholar 

    54.
    García-Tejero, S., Taboada, Á, Tárrega, R. & Salgado, J. M. Land use changes and ground dwelling beetle conservation in extensive grazing dehesa systems of north-west Spain. Biol. Conserv. 161, 58–66. https://doi.org/10.1016/j.biocon.2013.02.017 (2013).
    Article  Google Scholar 

    55.
    Tripathi, G., Ram, S., Sharma, B. M. & Singh, G. Soil faunal biodiversity and nutrient status in silvopastoral systems of Indian desert. Environ. Conserv. 32, 178–188. https://doi.org/10.1017/s0376892905002109 (2005).
    CAS  Article  Google Scholar 

    56.
    Brosi, B. J., Daily, G. C. & Ehrlich, P. R. Bee community shifts with landscape context in a tropical countryside. Ecol. Appl. 17, 418–430. https://doi.org/10.1890/06-0029 (2007).
    Article  PubMed  Google Scholar 

    57.
    Matos, M. C. B., Sousa-Souto, L., Almeida, R. S. & Teodoro, A. V. Contrasting patterns of species richness and composition of solitary wasps and bees (Insecta: Hymenoptera) according to land-use. Biotropica 45, 73–79. https://doi.org/10.1111/j.1744-7429.2012.00886.x (2013).
    Article  Google Scholar 

    58.
    Gonzalez-Moreno, A., Bordera, S., Leirana-Alcocer, J., Delfin-Gonzalez, H. & Ballina-Gomez, H. S. Explaining variations in the diversity of parasitoid assemblages in a biosphere reserve of Mexico: Evidence from vegetation, land management and seasonality. Bull. Entomol. Res. 108, 602–615. https://doi.org/10.1017/S0007485317001134 (2018).
    CAS  Article  PubMed  Google Scholar 

    59.
    Mazon, M. & Bordera, S. Effectiveness of two sampling methods used for collecting Ichneumonidae (Hymenoptera) in the Cabaneros National Park (Spain). Eur. J. Entomol. 105, 879–888. https://doi.org/10.14411/eje.2008.116 (2008).
    Article  Google Scholar 

    60.
    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes: A review. J. Appl. Ecol. 48, 619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x (2011).
    Article  Google Scholar 

    61.
    Mumme, S., Jochum, M., Brose, U., Haneda, N. F. & Barnes, A. D. Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia. Biol. Conserv. 191, 750–758. https://doi.org/10.1016/j.biocon.2015.08.033 (2015).
    Article  Google Scholar 

    62.
    Norgrove, L. & Beck, J. Biodiversity Function and resilience in tropical agroforestry systems including shifting cultivation. Curr. For. Rep. 2, 62–80. https://doi.org/10.1007/s40725-016-0032-1 (2016).
    Article  Google Scholar 

    63.
    Orford, K. A., Murray, P. J., Vaughan, I. P. & Memmott, J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. J. Appl. Ecol. 53, 906–915. https://doi.org/10.1111/1365-2664.12608 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Ruiz-Guerra, B., López-Acosta, J. C., Zaldivar-Riverón, A. & Velázquez-Rosas, N. Braconidae (Hymenoptera: Ichneumonoidea) abundance and richness in four types of land use and preserved rain forest in southern Mexico. Rev. Mexicana Biodivers. 86, 164–171. https://doi.org/10.7550/rmb.43865 (2015).
    Article  Google Scholar 

    65.
    Sanabria, C., Lavelle, P. & Fonte, S. J. Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. Appl. Soil. Ecol. 84, 24–30. https://doi.org/10.1016/j.apsoil.2014.07.001 (2014).
    Article  Google Scholar 

    66.
    Marinho, C. G. S., Zanetti, R., Delabie, J. H. C., Schlindwein, M. N. & Ramos, L. S. Diversidade de Formigas (Hymenoptera: Formicidae) da Serapilheira em Eucaliptais (Myrtaceae) e Área de Cerrado de Minas Gerais. Neotrop. Entomol. 31, 187–195 (2002).
    Article  Google Scholar 

    67.
    Mazon, M., Sanchez-Angarita, D., Diaz, F. A., Gutierrez, N. & Jaimez, R. Entomofauna Associated with agroforestry systems of timber species and Cacao in the Southern Region of the Maracaibo Lake Basin (Merida, Venezuela). Insects. https://doi.org/10.3390/insects9020046 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Riedel, J., Dorn, S. & Mody, K. Assemblage composition of ants (Hymenoptera: Formicidae) affected by tree diversity and density in native timber tree plantations on former tropical pasture. Myrmecol. News 20, 113–127 (2014).
    Google Scholar 

    69.
    Lubertazzi, D. & Tschinkel, W. R. Ant community change across a ground vegetation gradient in north Florida’s longleaf pine flatwoods. J. Insect Sci. 3, 1–17. https://doi.org/10.1673/031.003.2101 (2003).
    Article  Google Scholar 

    70.
    Yanoviak, S. P. & Kaspari, M. Community structure and the habitat templet: Ants in the tropical forest canopy and litter. Oikos 89, 259–266. https://doi.org/10.1034/j.1600-0706.2000.890206.x (2000).
    Article  Google Scholar 

    71.
    Ramirez, M., Herrera, J. & Armbrecht, I. Do ants predating in Colombian pastures and coffee plantations come down from the trees?. Rev. Colomb. Entomol. 36, 106–115 (2010).
    Google Scholar 

    72.
    Queiroz, J. M., Almeida, F. S. & Pereira, M. P. D. S. Conservação da biodiversidade e o papel das formigas (Hymenoptera: Formicidae) em agroecossistemas. Floresta e Ambiente 13, 37–45 (2006).
    Google Scholar 

    73.
    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880. https://doi.org/10.1111/ele.12277 (2014).
    Article  PubMed  Google Scholar 

    74.
    Bar-Massada, A. & Wood, E. M. The richness-heterogeneity relationship differs between heterogeneity measures within and among habitats. Ecography 37, 528–535. https://doi.org/10.1111/j.1600-0587.2013.00590.x (2014).
    Article  Google Scholar 

    75.
    Yang, L., Maron, J. L. & Callaway, R. M. Inhibitory effects of soil biota are ameliorated by high plant diversity. Oecologia 179, 519–525. https://doi.org/10.1007/s00442-015-3351-1 (2015).
    ADS  Article  PubMed  Google Scholar 

    76.
    Jacques, G. C., Souza, M. M., Coelho, H. J., Vicente, L. O. & Silveira, L. C. P. Diversity of social wasps (Hymenoptera: Vespidae: Polistinae) in an agricultural environment in Bambui, Minas Gerais, Brazil. Sociobiology 62, 439–445. https://doi.org/10.13102/sociobiology.v62i3.738 (2015).
    Article  Google Scholar 

    77.
    Prezoto, F., Santos-Prezoto, H. H., Machado, V. L. L. & Zanuncio, J. C. Prey captured and used in Polistes versicolor (Olivier) (Hymenoptera: Vespidae) nourishment. Neotrop. Entomol. 35, 707–709. https://doi.org/10.1590/s1519-566×2006000500021 (2006).
    Article  PubMed  Google Scholar 

    78.
    Korösi, Á, Batáry, P., Orosz, A., Rédei, D. & Báldi, A. Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conserv. Divers. 5, 57–66. https://doi.org/10.1111/j.1752-4598.2011.00153.x (2012).
    Article  Google Scholar 

    79.
    Burdine, J. D., Dominguez Martinez, G. H. & Philpott, S. M. Predictors of leafhopper abundance and richness in a coffee agroecosystem in Chiapas, Mexico. Environ. Entomol. 43, 328–335. https://doi.org/10.1603/EN13251 (2014).
    Article  PubMed  Google Scholar 

    80.
    Genung, W. G. & Mead, F. W. Leafhopper populations (Homoptera: Cicadellidae) on five pasture grasses in the Florida Everglades. Fla. Entomol. 52, 165–170 (1969).
    Article  Google Scholar 

    81.
    Quisenberry, S. S., Yonke, T. R. & Huggans, J. L. Leafhoppers Associated with Mixed Tall Fescue Pastures in Missouri (Homoptera: Cicadellidae). J. Kansas Entomol. Soc. 52, 421–437 (1979).
    Google Scholar 

    82.
    Bhandari, K. B., West, C. P. & Longing, S. D. Communities of canopy-dwelling arthropods in response to diverse forages. Ael. https://doi.org/10.2134/ael2018.07.0037 (2018).
    Article  Google Scholar 

    83.
    Wolcott, G. N. An animal census of two pastures and a Meadow in Northern New York. Ecol. Monogr. 7, 1–90 (1937).
    Article  Google Scholar 

    84.
    Auad, A. M. et al. Seleção de genótipos de capim-elefante quanto à resistência à cigarrinha-das-pastagens. Pesqui. Agropecu. Bras. 42, 1077–1081 (2007).
    Article  Google Scholar 

    85.
    Valerio, J. R. & Nakano, O. Damage caused by the pasture spittlebug Zulia entreriana on production and quality of Brachiaria decumbens. Pesqui. Agropecu. Bras. 23, 447–453 (1988).
    Google Scholar 

    86.
    Holzinger, W. E., Emeljanov, A. F. & Kammerlander, I. In Zikaden—Leafhoppers, Planthoppers and Cicadas (Insecta: Hemiptera: Auchenorrhyncha) Vol. 4 Denisia (ed. Holzinger, W.E.) 113–138 (Biologiezentrum, Linz, 2002).

    87.
    Urban, J. M. & Cryan, J. R. Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea). Mol. Phylogenet. Evol. 42, 556–572. https://doi.org/10.1016/j.ympev.2006.08.009 (2007).
    CAS  Article  PubMed  Google Scholar 

    88.
    Klimes, P., Borovanska, M., Plowman, N. S. & Leponce, M. How common is trophobiosis with hoppers (Hemiptera: Auchenorrhyncha) inside ant nests (Hymenoptera: Formicidae)? Novel interactions from New Guinea and a worldwide overview. Myrmecol. News 26, 31–45 (2018).
    Google Scholar 

    89.
    Bachtold, A., Alves-Silva, E., Kaminski, L. A. & Del-Claro, K. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Die Naturwissenschaften 101, 913–919. https://doi.org/10.1007/s00114-014-1232-9 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    90.
    Kaminski, L. A., Freitas, A. V. & Oliveira, P. S. Interaction between Mutualisms: Ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am. Nat. 176, 322–334. https://doi.org/10.1086/655427 (2010).
    Article  PubMed  Google Scholar 

    91.
    Kaminski, L. A. & Rodrigues, D. Species-specific levels of ant attendance mediate performance costs in a facultative myrmecophilous butterfly. Physiol. Entomol. 36, 208–214. https://doi.org/10.1111/j.1365-3032.2011.00785.x (2011).
    Article  Google Scholar 

    92.
    Mota, L. L. & Oliveira, P. S. Myrmecophilous butterflies utilise ant-treehopper associations as visual cues for oviposition. Ecol. Entomol. 41, 338–343. https://doi.org/10.1111/een.12302 (2016).
    Article  Google Scholar 

    93.
    Sendoya, S. F. & Oliveira, P. S. Ant-caterpillar antagonism at the community level: Interhabitat variation of tritrophic interactions in a neotropical savanna. J. Anim. Ecol. 84, 442–452. https://doi.org/10.1111/1365-2656.12286 (2015).
    Article  PubMed  Google Scholar 

    94.
    Townes, H. A light-weight Malaise trap. Entomol. News 83, 239–247 (1972).
    Google Scholar 

    95.
    Rafael, J. A., Melo, G. A. R., Carvalho, C. J. B. D., Casari, S. A. & Constantino, R. Insetos do Brasil: Diversidade e Taxonomia (Holos Editora, Ribeirão Preto, 2012).
    Google Scholar 

    96.
    Triplehorn, C. A. & Johnson, N. F. Estudo dos Insetos 2nd edn, 757 (Cengage Learning, Boston, 2015).
    Google Scholar 

    97.
    Fujihara, R. T., Forti, L. C., Almeida, M. C. D. & Baldin, E. L. L. Insetos de Importância Econômica: Guia Ilustrado para Identificação de Famílias. 391 (FEPAF, 2011).

    98.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    99.
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).
    Article  Google Scholar 

    100.
    EstimateS: statistical estimation of species richness and shared species from samples. (University of Connecticut, Connecticut, 2013).

    101.
    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication 117 (The University of Illinois Press, Champaign, 1949).
    Google Scholar 

    102.
    Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    103.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x (1993).
    Article  Google Scholar 

    104.
    PRIMER v7 (PRIMER-E, Plymouth, 2015). More