in

Mimicry of emergent traits amplifies coastal restoration success

[adace-ad id="91168"]
  • 1.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS  CAS  Google Scholar 

  • 2.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Google Scholar 

  • 3.

    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. 106, 12377–12381 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    PubMed  Google Scholar 

  • 6.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).

    Google Scholar 

  • 8.

    Strain, E. M. A. et al. The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean saltmarsh. J. Ecol. 105, 1374–1385 (2017).

    Google Scholar 

  • 9.

    Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61, 107–116 (2011).

    Google Scholar 

  • 10.

    Wilkinson, C. Status of Coral Reefs of the World: 2008, Vol. 296 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, 2008).

  • 11.

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being (Island Press, 2005).

  • 12.

    Gedan, K. & Silliman, B. Patterns of Salt Marsh Loss within Coastal Regions of North America: Presettlement to Present (University of California Press, Berkeley, 2009).

  • 13.

    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Simenstad, C., Reed, D. & Ford, M. When is restoration not?: incorporating landscape-scale processes to restore self-sustaining ecosystems in coastal wetland restoration. Ecol. Eng. 26, 27–39 (2006).

    Google Scholar 

  • 15.

    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    PubMed  Google Scholar 

  • 16.

    Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. 112, 14295–14300 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).

    Google Scholar 

  • 18.

    Teas, H. J. Ecology and restoration of mangrove shorelines in Florida. Environ. Conserv. 4, 51–58 (1977).

    Google Scholar 

  • 19.

    Renzi, J. J., He, Q. & Silliman, B. R. Harnessing positive species interactions to enhance coastal wetland restoration. Front. Ecol. Evol. 7 https://doi.org/10.3389/fevo.2019.00131 (2019).

  • 20.

    Shaver, E. C. & Silliman, B. R. Time to cash in on positive interactions for coral restoration. PeerJ 5, e3499 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Google Scholar 

  • 22.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed  Google Scholar 

  • 23.

    Nock, C. A., Vogt, R. J. & Beisner, B. E. Functional Traits Vol. 10, a0026282 (eLS. John Wiley Sons, Ltd, Chichester, 2016).

  • 24.

    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Vegetation Sci. 9, 113–122 (1998).

    Google Scholar 

  • 25.

    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Smaldino, P. E. The cultural evolution of emergent group-level traits. Behav. Brain Sci. 37, 243–254 (2014).

    PubMed  Google Scholar 

  • 27.

    Liu, Q. -X. et al. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    Maxwell, P. S. et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems—a review. Biol. Rev. 92, 1521–1538 (2016).

    PubMed  Google Scholar 

  • 29.

    Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).

    Google Scholar 

  • 30.

    Balke, T., Herman, P. M. J. & Bouma, T. J. Critical transitions in disturbance-driven ecosystems: identifying Windows of Opportunity for recovery. J. Ecol. 102, 700–708 (2014).

    Google Scholar 

  • 31.

    Christianen, M. J. A. et al. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 8, e62413 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Lo, V., Bouma, T., Van Belzen, J., Van Colen, C. & Airoldi, L. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea. Mar. Environ. Res. 131, 32–42 (2017).

    CAS  PubMed  Google Scholar 

  • 33.

    Bouma, T. J. et al. Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology 180-181, 57–65 (2013).

    ADS  Google Scholar 

  • 34.

    Bouma, T. J. et al. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86, 2187–2199 (2005).

    Google Scholar 

  • 35.

    Peralta, G., Van Duren, L., Morris, E. & Bouma, T. Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Mar. Ecol. Prog. Ser. 368, 103–115 (2008).

    ADS  Google Scholar 

  • 36.

    Wolters, M., Bakker, J. P., Bertness, M. D., Jeffries, R. L. & Möller, I. Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. J. Appl. Ecol. 42, 844–851 (2005).

    Google Scholar 

  • 37.

    Currin, C. A., Chappell, W. S. & Deaton, A. Developing alternative shoreline armoring strategies: The living shoreline approach in North Carolina, in (eds Shipman, H., Dethier, M. N., Gelfenbaum, G., Fresh, K. L. & Dinicola, R. S.), Puget Sound Shorelines and the Impacts of Armoring—Proceedings of a State of the Science Workshop, May 2009: U.S. Geological Survey Scientific Investigations Report 2010-5254, p. 91–102(2010).

  • 38.

    Herbert, D. et al. Mitigating erosional effects induced by boat wakes with living shorelines. Sustainability 10, 436 (2018).

    Google Scholar 

  • 39.

    Meyer, D. L., Townsend, E. C. & Thayer, G. W. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restor. Ecol. 5, 93–99 (1997).

    Google Scholar 

  • 40.

    Baine, M. Artificial reefs: a review of their design, application, management and performance. Ocean Coast. Manag. 44, 241–259 (2001).

    Google Scholar 

  • 41.

    Graham, P. M., Palmer, T. A. & Beseres Pollack, J. Oyster reef restoration: substrate suitability may depend on specific restoration goals. Restor. Ecol. 25, 459–470 (2017).

    Google Scholar 

  • 42.

    Bersoza Hernández, A. et al. Restoring the eastern oyster: how much progress has been made in 53 years? Front. Ecol. Environ. 16, 463–471 (2018).

    Google Scholar 

  • 43.

    Spieler, R. E., Gilliam, D. S. & Sherman, R. L. Artificial substrate and coral reef restoration: what do we need to know to know what we need. Bull. Mar. Sci. 69, 1013–1030 (2001).

    Google Scholar 

  • 44.

    Morgan, R. P. & Rickson, R. J. Slope Stabilization and Erosion Control: A Bioengineering Approach (Taylor & Francis, 2003).

  • 45.

    Suykerbuyk, W. et al. Unpredictability in seagrass restoration: analysing the role of positive feedback and environmental stress on Zostera noltii transplants. J. Appl. Ecol. 53, 774–784 (2016).

    Google Scholar 

  • 46.

    Bouma, T. J., Vries, M. B. D. & Herman, P. M. J. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91, 2696–2704 (2010).

    CAS  PubMed  Google Scholar 

  • 47.

    De Battisti, D. et al. Intraspecific root trait variability along environmental gradients affects salt marsh resistance to lateral erosion. Front. Ecol. Evol. 7 https://doi.org/10.3389/fevo.2019.00150 (2019).

  • 48.

    Silliman, B. R. & He, Q. Physical stress, consumer control, and new theory in ecology. Trends Ecol. Evol. 33, 492–503 (2018).

    PubMed  Google Scholar 

  • 49.

    Manis, J. E., Garvis, S. K., Jachec, S. M. & Walters, L. J. Wave attenuation experiments over living shorelines over time: a wave tank study to assess recreational boating pressures. J. Coast. Conserv. 19, 1–11 (2015).

    Google Scholar 

  • 50.

    Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7 https://doi.org/10.1038/ncomms12473 (2016).

  • 51.

    Bos, A. R. & van Katwijk, M. M. Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal eelgrass. Mar. Ecol. Prog. Ser. 336, 121–129 (2007).

    ADS  Google Scholar 

  • 52.

    Valdez, S. R. et al. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 91 https://doi.org/10.3389/fmars.2020.00091 (2020).

  • 53.

    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).

    Google Scholar 

  • 54.

    Romijn, E. et al. Land restoration in Latin America and the Caribbean: an overview of recent, ongoing and planned restoration initiatives and their potential for climate change mitigation. Forests 10, 510 (2019).

    Google Scholar 

  • 55.

    Broome, S. W., Seneca, E. D. & Woodhouse, W. W. Tidal salt marsh restoration. Aquat. Bot. 32, 1–22 (1988).

    Google Scholar 

  • 56.

    Pérez-Pagán, B. S. & Mercado-Molina, A. E. Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico. Conserv. Evid. 15, 43–47 (2018).

    Google Scholar 

  • 57.

    Strain, E. M. A. et al. Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. Ecol. Eng. 120, 637–644 (2018).

    Google Scholar 

  • 58.

    Cunha, A. H. et al. Changing paradigms in seagrass restoration. Restor. Ecol. 20, 427–430 (2012).

    Google Scholar 

  • 59.

    Derksen-Hooijberg, M. et al. Mutualistic interactions amplify saltmarsh restoration success. J. Appl. Ecol. 55, 405–414 (2018).

    Google Scholar 

  • 60.

    Ritchey, T. In 16th Euro Conference on Operational Analysis. Brussels. Online available at http://swemorph.com/pdf/gma.pdf.

  • 61.

    Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    CAS  PubMed  Google Scholar 

  • 63.

    Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).

    CAS  PubMed  Google Scholar 

  • 64.

    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. BioScience 51, 235–246 (2001).

    Google Scholar 

  • 65.

    Björk, M., Uku, J., Weil, A. & Beer, S. Photosynthetic tolerances to desiccation of tropical intertidal seagrasses. Mar. Ecol. Prog. Ser. 191, 121–126 (1999).

    ADS  Google Scholar 

  • 66.

    Silva, J. & Santos, R. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Mar. Ecol. Prog. Ser. 257, 37–44 (2003).

    ADS  Google Scholar 

  • 67.

    Crotty, S. M. & Bertness, M. D. Positive interactions expand habitat use and the realized niches of sympatric species. Ecology 96, 2575–2582 (2015).

    PubMed  Google Scholar 

  • 68.

    Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).

    ADS  Google Scholar 

  • 69.

    Price, J. S. & Whitehead, G. S. Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21, 32–40 (2001).

    Google Scholar 

  • 70.

    van der Heide, T. et al. Predation and habitat modification synergistically interact to control bivalve recruitment on intertidal mudflats. Biol. Conserv. 172, 163–169 (2014).

    Google Scholar 

  • 71.

    Schulte, D. M., Burke, R. P. & Lipcius, R. N. Unprecedented restoration of a native oyster metapopulation. Science 325, 1124–1128 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 72.

    Stokes, D. J., Healy, T. R. & Cooke, P. J. Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. J. Coast. Res., 113–122 https://doi.org/10.2112/08-1043.1 (2010).

  • 73.

    Bouma, T. J. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont. Shelf Res. 27, 1020–1045 (2007).

    ADS  Google Scholar 

  • 74.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 76.

    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Statistician 34, 216–221 (2018).

    Google Scholar 

  • 77.

    R Core Team. R Foundation for Statistical Computing (R Core Team, Vienna, 2014).

  • 78.

    Schwarz, C. et al. Abiotic factors governing the establishment and expansion of two salt marsh plants in the Yangtze Estuary, China. Wetlands 31, 1011–1021 (2011).

    Google Scholar 

  • 79.

    Marbà, N. & Duarte, C. M. Rhizome elongation and seagrass clonal growth. Marine Ecology Progress Series 174, 269–280 (1998).

    ADS  Google Scholar 

  • 80.

    Bastyan, G. R. & Cambridge, M. L. Transplantation as a method for restoring the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science 79, 289–299.

  • 81.

    Temmink, R. J. M. et al. Data from: mimicry of emergent traits amplifies coastal restoration success. DANS https://doi.org/10.17026/dans-xx2-s4c6 (2020).


  • Source: Ecology - nature.com

    Publisher Correction: Impacts of hydrothermal plume processes on oceanic metal cycles and transport

    Covid-19 shutdown led to increased solar power output