Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus
1.
Kumar, V. Biological Timekeeping. (Springer, India, 2017). .
2.
Tessmar-Raible, K., Raible, F. & Arboleda, E. Another place, another timer: marine species and the rhythms of life. Bioessays 33, 165–172 (2011).
PubMed PubMed Central Google Scholar
3.
de la Iglesia, H. O. & Johnson, C. H. Biological clocks: riding the tides. Curr. Biol. 23, R921–R923 (2013).
PubMed PubMed Central Google Scholar
4.
Oosthuizen, M. K., Cooper, H. M. & Bennett, N. C. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (Family: Bathyergidae). J. Biol. Rhythms 18, 481–490 (2003).
PubMed Google Scholar
5.
van Oort, B. E. H. et al. Circadian organization in reindeer. Nature 438, 1095–1096 (2005).
ADS PubMed Google Scholar
6.
Childress, J. J. & Thuesen, E. V. in Deep-Sea Food Chains and the Global Carbon Cycle (eds. Rowe, G. T. & Pariente, V.) 217–236 (Springer, Netherlands, 1992).
7.
Turekian, K. K. et al. Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proc. Natl Acad. Sci. USA 72, 2829–2832 (1975).
ADS CAS PubMed Google Scholar
8.
Levin, L. A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Marine Sci. https://doi.org/10.3389/fmars.2016.00072 (2016).
9.
Du Preez, C. & Fisher, C. R. Long-term stability of back-arc basin hydrothermal vents. Front. Marine Sci. https://doi.org/10.3389/fmars.2018.00054 (2018).
10.
Cuvelier, D. et al. Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge. Limnol. Oceanogr. 56, 1624–1640 (2011).
ADS Google Scholar
11.
Garrett, C. Internal tides and ocean mixing. Science 301, 1858–1859 (2003).
CAS PubMed Google Scholar
12.
Childress, J. J. & Fisher, C. R. The biology of hydrothermal vent animals: Physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Ann. Rev. 30, 337–441 (1992).
13.
Barreyre, T. et al. Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge: MAR vent-field temperature monitoring. J. Geophys. Res.: Solid Earth 119, 2543–2566 (2014).
ADS Google Scholar
14.
Lelièvre, Y. et al. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates. Proc. R. Society B: Biol. Sci. 284, 20162123 (2017).
15.
Cuvelier, D., Legendre, P., Laes, A., Sarradin, P.-M. & Sarrazin, J. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field – a multidisciplinary deep-sea observatory approach. PLoS ONE 9, e96924 (2014).
ADS PubMed PubMed Central Google Scholar
16.
Cuvelier, D., Legendre, P., Laës-Huon, A., Sarradin, P.-M. & Sarrazin, J. Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems. Biogeosciences 14, 2955–2977 (2017).
ADS Google Scholar
17.
Nedoncelle, K. et al. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats. Deep Sea Res. Part I: Oceanographic Res. Pap. 106, 183–193 (2015).
ADS Google Scholar
18.
Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & de la Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).
PubMed Google Scholar
19.
Sbragaglia, V. et al. Identification, characterization, and diel pattern of expression of canonical clock genes in Nephrops norvegicus (Crustacea: Decapoda) eyestalk. PLOS ONE 10, e0141893 (2015).
PubMed PubMed Central Google Scholar
20.
Modica, L., Cartes, J. E. & Carrassón, M. Food consumption of five deep-sea fishes in the Balearic Basin (western Mediterranean Sea): are there daily feeding rhythms in fishes living below 1000 m?: feeding rhythm and rations in deep-sea fishes. J. Fish. Biol. 85, 800–820 (2014).
CAS PubMed Google Scholar
21.
Wagner, H.-J., Kemp, K., Mattheus, U. & Priede, I. G. Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res. Part I: Oceanographic Res. Pap. 54, 1944–1956 (2007).
ADS Google Scholar
22.
Hui, M., Song, C., Liu, Y., Li, C. & Cui, Z. Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis. PLoS ONE 12, e0178417 (2017).
PubMed PubMed Central Google Scholar
23.
Mercier, A. & Hamel, J.-F. in Annual, Lunar, and Tidal Clocks: Patterns and Mechanisms of Nature’s Enigmatic Rhythms (eds. Numata, H. & Helm, B.) 99–120 (Springer, Japan, 2014).
24.
Husson, B., Sarradin, P.-M., Zeppilli, D. & Sarrazin, J. Picturing thermal niches and biomass of hydrothermal vent species. Deep Sea Res. Part II: Topical Stud. Oceanogr. 137, 6–25 (2017).
ADS Google Scholar
25.
Duperron, S. in The Vent and Seep Biota: Aspects from Microbes to Ecosystems (ed. Kiel, S.) 137–167 (Springer, Netherlands, 2010).
26.
Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
CAS PubMed Google Scholar
27.
Gosling, E. M. Marine Bivalve Molluscs. (Wiley Blackwell, 2015).
28.
Takeuchi, T. et al. Draft genome of the Pearl Oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res. 19, 117–130 (2012).
CAS PubMed PubMed Central Google Scholar
29.
Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2012).
ADS PubMed PubMed Central Google Scholar
30.
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
PubMed Google Scholar
31.
Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Standards Genomic Sci. 12, 50 (2017).
Google Scholar
32.
Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evolution 9, 1148–1160 (2017).
Google Scholar
33.
Payton, L. et al. Remodeling of the cycling transcriptome of the oyster Crassostrea gigas by the harmful algae Alexandrium minutum. Sci. Rep. 7, 3480 (2017).
Google Scholar
34.
Sorek, M. et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 6, 83 (2018).
PubMed PubMed Central Google Scholar
35.
Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400 (2014).
PubMed PubMed Central Google Scholar
36.
Ren, Y., Hong, C. I., Lim, S. & Song, S. Finding clocks in genes: a bayesian approach to estimate periodicity. BioMed. Res. Int. 2016, 1–14 (2016).
Google Scholar
37.
Radford-Knoery, J. et al. Distribution of dissolved sulfide, methane, and manganese near the seafloor at the Lucky Strike (37°17′N) and Menez Gwen (37°50′N) hydrothermal vent sites on the mid-Atlantic Ridge. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 367–386 (1998).
ADS CAS Google Scholar
38.
Waeles, M. et al. On the early fate of hydrothermal iron at deep-sea vents: a reassessment after in situ filtration: Fe Sulfide Precipitation Is Very Limited. Geophys. Res. Lett. 44, 4233–4240 (2017).
ADS Google Scholar
39.
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar
40.
Sung, Windsor & Morgan, J. J. Kinetics and product of ferrous iron oxygenation in aqueous systems. Environ. Sci. Technol. 14, 561–568 (1980).
ADS CAS Google Scholar
41.
Tapley, D. W., Buettner, G. R. & Shick, J. M. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull. 196, 52–56 (1999).
CAS PubMed PubMed Central Google Scholar
42.
Hayden, M. S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004).
CAS PubMed Google Scholar
43.
Courtial, L. et al. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci. Rep. 7, 45713 (2017).
ADS CAS PubMed PubMed Central Google Scholar
44.
Praveen, K. & Saxena, N. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation. Radiat. Res. 179, 725–736 (2013).
ADS CAS PubMed Google Scholar
45.
Distel, D. L. et al. Do mussels take wooden steps to deep-sea vents? Nature 403, 725–726 (2000).
ADS CAS PubMed Google Scholar
46.
Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
CAS PubMed PubMed Central Google Scholar
47.
Connor, K. M. & Gracey, A. Y. Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus. Proc. Natl Acad. Sci. USA 108, 16110–16115 (2011).
48.
Gracey, A. Y. et al. Rhythms of gene expression in a fluctuating intertidal environment. Curr. Biol. 18, 1501–1507 (2008).
CAS PubMed Google Scholar
49.
White, S. N., Chave, A. D., Reynolds, G. T. & Van Dover, C. L. Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge. Geophys. Res. Lett. 29, 34-1–34-4 (2002).
Google Scholar
50.
Devey, C., Fisher, C. & Scott, S. Responsible science at hydrothermal vents. Oceanography 20, 162–171 (2007).
Google Scholar
51.
Hughes, M. E. et al. Guidelines for genome-scale analysis of biological rhythms. J. Biol. Rhythms 32, 380–393 (2017).
CAS PubMed PubMed Central Google Scholar
52.
Yoo, S.-H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).
ADS CAS PubMed Google Scholar
53.
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).
ADS CAS PubMed Google Scholar
54.
Li, J., Grant, G. R., Hogenesch, J. B. & Hughes, M. E. Considerations for RNA-seq analysis of circadian rhythms. Methods Enzymol. 551, 349–367 (2015).
55.
O’Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).
ADS PubMed PubMed Central Google Scholar
56.
Rey, G. et al. Metabolic oscillations on the circadian time scale in Drosophila cells lacking clock genes. Mol. Syst. Biol. 14, e8376 (2018).
PubMed PubMed Central Google Scholar
57.
Zhang, L. et al. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra. Curr. Biol. 23, 1863–1873 (2013).
CAS PubMed PubMed Central Google Scholar
58.
Zantke, J. et al. Circadian and Circalunar Clock Interactions in a Marine Annelid. Cell Rep. 5, 99–113 (2013).
CAS PubMed PubMed Central Google Scholar
59.
Mat, A. M., Perrigault, M., Massabuau, J.-C. & Tran, D. Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms. Chronobiol. Int. 33, 949–963 (2016).
CAS PubMed Google Scholar
60.
O’Neill, J. S. et al. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Curr. Biol. 25, R326–R327 (2015).
PubMed PubMed Central Google Scholar
61.
Schnytzer, Y. et al. Tidal and diel orchestration of behaviour and gene expression in an intertidal mollusc. Sci. Rep. 8, 4917 (2018).
ADS CAS PubMed PubMed Central Google Scholar
62.
Saurel, C., Gascoigne, J. C., Palmer, M. R. & Kaiser, M. J. In situ mussel feeding behavior in relation to multiple environmental factors: regulation through food concentration and tidal conditions. Limnol. Oceanogr. 52, 1919–1929 (2007).
ADS Google Scholar
63.
Comeau, L. A., Babarro, J. M. F., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain. Aquac. Rep. 9, 68–73 (2018).
Google Scholar
64.
Connor, K. M. & Gracey, A. Y. High-resolution analysis of metabolic cycles in the intertidal mussel Mytilus californianus. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 302, R103–R111 (2012).
CAS Google Scholar
65.
Ameyaw-Akumfi, C. & Naylor, E. Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol. 95, 237–242 (1987).
Google Scholar
66.
Chapman, E. C., O’Dell, A. R., Meligi, N. M., Parsons, D. R. & Rotchell, J. M. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol. Int. 34, 1300–1314 (2017).
CAS PubMed Google Scholar
67.
Mat, A. M., Massabuau, J.-C., Ciret, P. & Tran, D. Looking for the clock mechanism responsible for circatidal behavior in the oyster Crassostrea gigas. Mar. Biol. 161, 89–99 (2014).
Google Scholar
68.
Tran, D., Perrigault, M., Ciret, P. & Payton, L. Bivalve mollusc circadian clock genes can run at tidal frequency. Proc. R. Soc. B 287, 20192440 (2020).
PubMed Google Scholar
69.
Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).
CAS PubMed Google Scholar
70.
Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).
ADS CAS PubMed Google Scholar
71.
Sarrazin, J. et al. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal vents. in OCEANS 2007 – Europe 1–4 (IEEE, 2007).
72.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
CAS PubMed PubMed Central Google Scholar
73.
Dutilleul, P. Multi-frequential periodogram analysis and the detection of periodic components in time series. Commun. Stat. – Theory Methods 30, 1063–1098 (2001).
MathSciNet MATH Google Scholar
74.
Johnson, C. H., Elliott, J., Foster, R., Honma, K.-I. & Kronauer, R. in Chronobiology: Biological Timekeeping (eds. Dunlap, J. C., Loros, J. J. & DeCoursey, P. J.) 406 (Sinauer Associates, Inc. Publishers, 2004).
75.
Pegau, W. S., Gray, D. & Zaneveld, J. R. V. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).
ADS CAS PubMed Google Scholar
76.
Francis, W. R. et al. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly. BMC Genomics 14, 167 (2013).
CAS PubMed PubMed Central Google Scholar
77.
Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. https://doi.org/10.1186/s13059-016-0881-8 (2016).
78.
Cabau, C. et al. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. PeerJ 5, e2988 (2017).
PubMed PubMed Central Google Scholar
79.
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
CAS PubMed Google Scholar
80.
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed PubMed Central Google Scholar
81.
R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
82.
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
CAS PubMed Google Scholar
83.
Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.36.0. (2019).
84.
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).
CAS PubMed Google Scholar
85.
Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evolution 30, 772–780 (2013).
CAS Google Scholar
86.
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2015).
CAS Google Scholar
87.
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
CAS PubMed Google Scholar
88.
Oliveri, P. et al. The Cryptochrome/Photolyase Family in aquatic organisms. Mar. Genomics 14, 23–37 (2014).
PubMed Google Scholar More
