in

The density of anthropogenic features explains seasonal and behaviour-based functional responses in selection of linear features by a social predator

[adace-ad id="91168"]
  • 1.

    Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209–225 (2002).

    Google Scholar 

  • 2.

    Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: A reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).

    Google Scholar 

  • 3.

    Sahlén, E., Støen, O. & Swenson, J. E. Brown bear den site concealment in relation to human activity in Sweden. Ursus 22, 152–158 (2011).

    Google Scholar 

  • 4.

    James, A. & Stuart-Smith, A. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manage. 64, 154–159 (2000).

    Google Scholar 

  • 5.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  • 6.

    Wittmer, H. U., McLellan, B. N., Serrouya, R. & Apps, C. D. Changes in landscape composition influence the decline of a threatened woodland caribou population. J. Anim. Ecol. 76, 568–579 (2007).

    PubMed  Google Scholar 

  • 7.

    Irwin, L. L., Rock, D. F. & Miller, G. P. Stand structures used by Northern spotted owls in managed forests. J. Raptor Res. 34, 175–186 (2000).

    Google Scholar 

  • 8.

    Leblond, M., Dussault, C. & Ouellet, J. P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 289, 32–40 (2013).

    Google Scholar 

  • 9.

    Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: Wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).

    Google Scholar 

  • 10.

    Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE https://doi.org/10.1371/journal.pone.0195480 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542 (2011).

    Google Scholar 

  • 12.

    Sorensen, T. et al. Determining sustainable levels of cumulative effects for boreal caribou. J. Wildl. Manage. 72, 900–905 (2008).

    Google Scholar 

  • 13.

    Dabros, A., Pyper, M. & Castilla, G. Seismic lines in the boreal and arctic ecoystems of North America: Environmental impacts, challenges and opportunities. Environ. Rev. 26, 214–229 (2018).

    Google Scholar 

  • 14.

    Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240–250 (2006).

    PubMed  Google Scholar 

  • 15.

    Pigeon, K. E. et al. Toward the restoration of caribou habitat: Understanding factors associated with human motorized use of legacy seismic lines. Environ. Manage. 58, 821–832 (2016).

    ADS  PubMed  Google Scholar 

  • 16.

    Schneider, R. R., Hauer, G., Adamowicz, W. L. V. & Boutin, S. Triage for conserving populations of threatened species: The case of woodland caribou in Alberta. Biol. Conserv. 143, 1603–1611 (2010).

    Google Scholar 

  • 17.

    Environment Canada. Recovery strategy for the woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. in Species at Risk Act Recovery Strategy Series 138 (Environment Canada, 2012).

  • 18.

    Environment Canada. Recovery strategy for the woodland Caribou, southern mountain population (Rangifer tarandus caribou) in Canada. in Species at Risk Act Recovery Strategy Series. Environment 103 (Environment Canada, Ottawa, 2014).

  • 19.

    Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).

    Article  Google Scholar 

  • 20.

    DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284 (2018).

    PubMed  Google Scholar 

  • 21.

    Johnson, C. J., Ehlers, L. P. W. & Seip, D. R. Witnessing extinction—Cumulative impacts across landscapes and the future loss of an evolutionarily significant unit of woodland caribou in Canada. Biol. Conserv. 186, 176–186 (2015).

    Google Scholar 

  • 22.

    Fisher, J. T. & Burton, A. C. Widlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328 (2018).

    Google Scholar 

  • 23.

    Ehlers, L. P. W., Johnson, C. J. & Seip, D. R. Evaluating the influence of anthropogenic landscape change on Wolf distribution: Implications for woodland caribou. Ecosphere 7, e01600. https://doi.org/10.1002/ecs2.1600 (2016).

    Article  Google Scholar 

  • 24.

    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape. Ecol. 25, 419–433 (2010).

    Google Scholar 

  • 25.

    Mysterud, A. & Ims, R. A. Functional responses in habitat use: Availability influences relative use in trade-off situations. Ecology 79, 1435–1441 (1998).

    Google Scholar 

  • 26.

    Lima, S. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–639 (1990).

    Google Scholar 

  • 27.

    Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).

    Google Scholar 

  • 28.

    Latham, A. D. M., Latham, M. C., Boyce, M. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).

    Google Scholar 

  • 29.

    Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scale: Implications of forest management. For. Ecol. Manage. 257, 96–106 (2009).

    Google Scholar 

  • 30.

    McLoughlin, P., Dunford, J. & Boutin, S. Relating predation mortality to broad-scale habitat selection. J. Anim. Ecol. 74, 701–707 (2005).

    Google Scholar 

  • 31.

    Ausband, D. E. et al. Surveying predicted rendezvous sites to monitor gray wolf populations. J. Wildlife. Manage. 71, 1043–1049 (2010).

    Google Scholar 

  • 32.

    Corns, I. & Annas, R. M. Field Guide to Forest Ecosystems of West-Central Alberta 251 (Canadian Forest Service Northern Forestry Centre, Edmonton, 1986).

    Google Scholar 

  • 33.

    van Rensen, C. K., Nielsen, S. E., White, B., Vinge, T. & Lieffers, V. J. Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta’s oil sands region. Biol. Conserv. 184, 127–135 (2015).

    Google Scholar 

  • 34.

    Swanson, M. E. et al. The forgotten stage of forest succession: Early-successional ecoystems on forest sites. Front. Ecol. Environ. 9, 117–125 (2010).

    Google Scholar 

  • 35.

    Melin, M., Matala, J., Mehtätalo, L., Pusenius, J. & Packalen, P. Ecological dimensions of airborne laser scanning—Analyzing the role of forest structure in moose habitat use within a year. Remote Sens. Environ. 173, 238–247 (2015).

    ADS  Google Scholar 

  • 36.

    Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manage. 409, 190–201 (2018).

    Google Scholar 

  • 37.

    DeCesare, N. J. et al. Transcending scale dependence in identifying habitat with resource selection functions. Ecology 22, 1068–1083 (2012).

    Google Scholar 

  • 38.

    Neufeld, L. M. Spatial Dynamics of Wolves and Woodland Caribou in an Industrial Forest Landscape in West-Central Alberta 155 (University of Alberta, Alberta, 2006).

    Google Scholar 

  • 39.

    Webb, N., Hebblewhite, M. & Merrill, E. Statistical methods for identifying wolf kill sites using global positioning system locations. J. Wildl. Manage. 72, 1798–1804 (2008).

    Google Scholar 

  • 40.

    Jedrzejewski, W., Schmidt, K., Theuerkauf, J., Jedrzejewska, B. & Okarma, H. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza primeval forest in Poland. Can. J. Zool. 79, 1993–2004 (2001).

    Google Scholar 

  • 41.

    Mech, L. D. & Boitani, L. Wolves 472 (University of Chicago Press, Chicago, Behaviour, Ecology and Conservation, 2003).

    Google Scholar 

  • 42.

    Jenness, J. Topographic position index (tpi_jen.avx) extension for ArcView 3.x v. 1.3a https://www.jennessent.com/arcview/tpi.htm (2006). Accessed 15 June 2014.

  • 43.

    Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L. & Holmes, K. Modeling soil–landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 64, 2046 (2000).

    ADS  CAS  Google Scholar 

  • 44.

    Franklin, S. E., Peddle, D. R. & Dechka, J. A. Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping. Int. J. Remote Sens. 23, 4633–4652 (2002).

    ADS  Google Scholar 

  • 45.

    McDermid, G. J. et al. Remote sensing and forest inventory for wildlife habitat assessment. For. Ecol. Manage. 257, 2262–2269 (2009).

    Google Scholar 

  • 46.

    Environmental Systems Research Institute [ESRI] ArcGIS Desktop: Release 10. Redlands, California, (2015).

  • 47.

    MacNearney, D. et al. Heading for the hills? Evaluating spatial distribution of woodland caribou in response to a growing anthropogenic disturbance footprint. Ecol. Evol. 6, 6484–6509 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Nielsen, S. E., Cranston, J., Stenhouse, G. B. & Street, M. Identification of priority areas for grizzly bear conservation and recovery in Alberta, Canada. J. Conserv. Plan. 5, 38–60 (2009).

    Google Scholar 

  • 49.

    White, B. et al. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 37, 333–347 (2012).

    Google Scholar 

  • 50.

    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).

    ADS  CAS  PubMed  Google Scholar 

  • 51.

    Beyer, H. Geospatial Modelling Environment (version 0.7.2.1) https://www.spatialecology.com/gme (2012). Accessed 16 April 2016.

  • 52.

    Murtaugh, P. Simplicity and complexity in ecological data analysis. Ecology 88, 56–62 (2007).

    PubMed  Google Scholar 

  • 53.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach 2nd edn. (Springer, New Yirk, 2002).

    Google Scholar 

  • 54.

    Takahata, C., Nielsen, S. E., Takii, A. & Izumiyama, S. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape. PLoS ONE 9, e86181. https://doi.org/10.1371/journal.pone.0086181 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. & Frair, J. Correlation and studies of habitat selection: Problem, red herring, or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2233–2244 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).

    PubMed  Google Scholar 

  • 57.

    Fieberg, J., Rieger, R. H., Zicus, M. C. & Schildcrout, J. S. Regression modelling of correlated data in ecology: Subject-specific and population averaged response patterns. J. Appl. Ecol. 46, 1018–1025 (2009).

    Google Scholar 

  • 58.

    Glenn, E. M., Hansen, M. C. & Anthony, R. G. Spotted owl home-range and habitat use in young forests of western Oregon. J. Wildl. Manage. 68, 33–50 (2004).

    Google Scholar 

  • 59.

    Sawyer, H., Nielson, R. M., Lindzey, F. & McDonald, L. L. Winter habitat selection of mule deer before and during development of a natural gas field. J. Wildl. Manage. 70, 396–403 (2006).

    Google Scholar 

  • 60.

    Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals—Statistical Design and Analysis for Field Studies 2nd edn. (Kluwer Acadamic Publishers, Berlin, 2002).

    Google Scholar 

  • 61.

    Hebblewhite, M., Percy, M. & Merrill, E. H. Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the central Canadian Rockies. J. Wildl. Manage. 71, 2026–2033 (2007).

    Google Scholar 

  • 62.

    Frair, J. L. et al. Removing GPS collar bias in habitat selection studies. J. Appl. Ecol. 41, 201–212 (2004).

    Google Scholar 

  • 63.

    Lumley, T. Survey: Analysis of complex survey samples. R packages version 3.30 (2014).

  • 64.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2015). Accessed 12 Dec 2016.

  • 65.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  • 66.

    Matthiopoulos, J., Hebblewhite, M., Aarts, G. & Fieberg, J. Generalized functional responses for species distributions. Ecology 92, 583–589 (2011).

    PubMed  Google Scholar 

  • 67.

    McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus. 2, 205–216 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Droghini, A. & Boutin, S. Snow conditions influence grey wolf (Canis lupus) travel paths: The effect of human-created linear features. Can. J. Zool. 96, 39–47 (2017).

    Google Scholar 

  • 69.

    García-Marmolejo, G., Chapa-Vargas, L., Weber, M. & Huber-Sannwald, E. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico. Glob. Ecol. Conserv. 3, 744–755 (2015).

    Google Scholar 

  • 70.

    DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. R. Soc. B 279, 4626–4633 (2012).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    MIT research on seawater surface tension becomes international guideline

    Echolocation at high intensity imposes metabolic costs on flying bats