More stories

  • in

    Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus leucura)

    Appella E, Weber IT, Blasi F (1988) Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 231:1–4
    CAS  PubMed  Google Scholar 

    Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44:140–151
    PubMed  Google Scholar 

    Bi K, Linderoth T, Singhal S, Vanderpool D, Patton JL, Nielsen R et al. (2019) Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genet 15:e1008119
    CAS  PubMed  PubMed Central  Google Scholar 

    Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36
    Google Scholar 

    Brauer CJ, Hammer MP, Beheregaray LB (2016) Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol 25:5093–5113
    CAS  PubMed  Google Scholar 

    Braun CE, Hoffman RW, Rogers GE (1976) Wintering areas and winter ecology of white-tailed ptarmigan in Colorado, Colorado Division of Wildlife, Denver, CO, USA. Special Report 38

    Braun CE, Taylor WP, Ebbert SE, Kaler RSA, Sandercock BK (2011) Protocols for successful translocation of ptarmigan. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world. The Peregrine Fund, Boise, ID, USA, p 339–348
    Google Scholar 

    Braun CE, Williams III SO (2015) History and status of the white-tailed ptarmigan in New Mexico. West Birds 46:233–243
    Google Scholar 

    Brown RD, Brasnett B (2010) Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, version 1. Colorado USA NASA National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, CO, USA
    Google Scholar 

    Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097
    CAS  PubMed  PubMed Central  Google Scholar 

    Bryant JP, Kuropat PJ (1980) Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu Rev Ecol Syst 11:261–285
    CAS  Google Scholar 

    Capblancq T, Luu K, Blum MGB, Bazin E (2018a) How to make use of ordination methods to identify local adaptation: a comparison of genome scans based on PCA and RDA. bioRxiv: 258988v2

    Capblancq T, Luu K, Blum MGB, Bazin E (2018b) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18:1223–1233
    CAS  PubMed  Google Scholar 

    Carey C, Martin K (1997) Physiological ecology of incubation of ptarmigan eggs at high and low altitudes. Wildlife Biol 3:211–218
    Google Scholar 

    Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803
    CAS  PubMed  Google Scholar 

    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92
    CAS  PubMed  PubMed Central  Google Scholar 

    Clarke JA, Johnson RE (1992) The influence of spring snow depth on white-tailed ptarmigan breeding success in the Sierra Nevada. Condor 94:622–627
    Google Scholar 

    Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–23
    CAS  PubMed  PubMed Central  Google Scholar 

    Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg LA et al. (2010) Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8:e1000475
    PubMed  PubMed Central  Google Scholar 

    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158
    CAS  PubMed  PubMed Central  Google Scholar 

    Dragon S, Carey C, Martin K, Baumann R (1999) Effect of high altitude and in vivo adenosine/beta-adrenergic receptor blockade on ATP and 2,3BPG concentrations in red blood cells of avian embryos. J Exp Biol 202:2787–2795
    CAS  PubMed  Google Scholar 

    Dray S, Blanchet D, Borcard D, Clappe S, Guenard G, Jombart T et al. (2019) Adespatial: multivariate multiscale spatial analysis. R package version 0.3-4. http://cran.r-project.org/package=adespatial

    Erikstad KE, Andersen R (1983) The effect of weather on survival, growth rate, and feeding time in different sized willow grouse broods. Ornis Scand 14:249–252
    Google Scholar 

    Fabian DK, Kapun M, Nolte V, Kofler R, Schmidt PS, Schlötterer C et al. (2012) Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol 21:4748–4769
    PubMed  PubMed Central  Google Scholar 

    Fedy BC, Martin K (2011) The influence of fine-scale habitat features on regional variation in population performance of alpine white-tailed ptarmigan. Condor 113:306–315
    Google Scholar 

    Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917
    CAS  PubMed  Google Scholar 

    Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315
    Google Scholar 

    Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol 27:2215–2233
    CAS  PubMed  Google Scholar 

    Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogenous landscapes. Mol Ecol 24:104–120
    Google Scholar 

    Frederick GP, Gutiérrez RJ (1992) Habitat use and population characteristics of the white-tailed ptarmigan in the Sierra Nevada, California. Condor 94:889–902
    Google Scholar 

    Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL (2018) Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob Ecol Biogeogr 27:1268–1276
    Google Scholar 

    Friedl MA, Gray J, Sulla-Menashe D (2009) MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V005 [2000–2010]. NASA EOSDIS Land Processes DAAC. Sioux Falls, SD, USA

    García-González R, Aldezabal A, Laskurain NA, Margalida A, Novoa C (2016) Influence of snowmelt timing on the diet quality of pyrenean rock ptarmigan (Lagopus muta pyrenaica): implications for reproductive success. PLoS ONE 11:1–21
    Google Scholar 

    Giesen KM, Braun CE, May TA (1980) Reproduction and nest-site selection by white-tailed ptarmigan in Colorado. Wilson Bull 92:188–199
    Google Scholar 

    Hakkarainen H, Virtanen R, Honkanen JO, Roininen H (2007) Willow bud and shoot foraging by ptarmigan in relation to snow level in NW Finnish Lapland. Polar Biol 30:619–624
    Google Scholar 

    Hall D, Salomonson V, Riggs G (2006) MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 5. NASA Natl Snow Ice Data Cent Distrib Act Arch Center Boulder, CO, USA

    Hannon SJ, Eason PK, Martin K (1998) Willow ptarmigan (Lagopus lagopus), version 2.0. In: Poole AF, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Henry P, Sim Z, Russello MA (2012) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: The American Pika. PLoS ONE 7:1–10
    Google Scholar 

    Hoffman RW, Braun CE (1975) Migration of a wintering population of white-tailed ptarmigan in Colorado. J Wildl Manage 39:485–490
    Google Scholar 

    Hoffmann AA, Sgró CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485
    CAS  PubMed  Google Scholar 

    Holsinger LM, Parks SA, Parisien M-A, Miller C, Batllori E, Moritz MA (2019) Climate change likely to reshape vegetation in North America’s largest protected areas. Conserv Sci Pract 1:e50
    Google Scholar 

    Höst P (1942) Effect of light on the moults and sequences of plumage in the willow ptarmigan. Auk 59:388–403
    Google Scholar 

    Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:169–175
    Google Scholar 

    Imperio S, Bionda R, Viterbi R, Provenzale A (2013) Climate change and human disturbance can lead to local extinction of alpine rock ptarmigan: new insight from the Western Italian Alps. PLoS ONE 8:e81598
    PubMed  PubMed Central  Google Scholar 

    Jacobsen EE, White CM, Emison WB (2007) Molting adaptations of rock ptarmigan on Amchitka Island, Alaska. Condor 85:420
    Google Scholar 

    Kawecki T, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters 7:1225–1241
    Google Scholar 

    Ke J, Wang L, Xiao D (2017) Cardiovascular adaptation to high-altitude hypoxia. In: Zheng J, Zhou C (eds) Hypoxia and human diseases. IntechOpen Limited, London, UK, p 117–134
    Google Scholar 

    Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6
    Google Scholar 

    Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87:323–330
    PubMed  Google Scholar 

    Kozma R, Rödin-Mörch P, Höglund J (2019) Genomic regions of speciation and adaptation among three species of grouse. Sci Rep 9:1–8
    CAS  Google Scholar 

    Laiolo P, Obeso JR (2017) Life-history responses to the altitudinal gradient. In: Catalan J (ed) High mountain conservation in a changing world, Advances in Global Change Research, Vol 62, p. 3–36. Springer, Cham

    Langin KM, Aldridge CL, Fike JA, Cornman RS, Martin K, Wann GT et al. (2018) Characterizing range-wide divergence in an alpine-endemic bird: a comparison of genetic and genomic approaches. Conserv Genet 19:1471–1485
    CAS  Google Scholar 

    Latifovic R, Pouliot D, Olthof I (2017) Circa 2010 land cover of Canada: local optimization methodology and product development. Remote Sens 9:1098
    Google Scholar 

    Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier, Amsterdam, The Netherlands
    Google Scholar 

    Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285–291
    CAS  PubMed  Google Scholar 

    Martin K, Brown GA, Young JR (2004) The historic and current distribution of the Vancouver Island white-tailed ptarmigan (Lagopus leucurus saxatilis). J F Ornithol 75:239–256
    Google Scholar 

    Martin K, Robb LA, Wilson S, Braun CE (2015) White-tailed ptarmigan (Lagopus leucura), version 2.0. In: Rodewald PG (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Martin K, Wiebe KL (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr Comp Biol 44:177–185
    PubMed  Google Scholar 

    May TA, Braun CE (1972) Seasonal foods of adult white-tailed ptarmigan in Colorado. J Wildl Manage 36:1180–1186
    Google Scholar 

    McKinnon L, Picotin M, Bolduc E, Juillet C, Bêty J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90:961–971
    Google Scholar 

    Mills LS, Bragina EV, Kumar AV, Zimova M, Lafferty DJR, Feltner J et al. (2018) Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science 359:1033–1036
    CAS  PubMed  Google Scholar 

    Montgomerie R, Holder K (2008) Rock ptarmigan (Lagopus muta), version 2.0. In: Poole AF (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764
    CAS  PubMed  PubMed Central  Google Scholar 

    Moss R (1973) The digestion and intake of winter foods by wild ptarmigan in Alaska. Condor 75:293–300
    Google Scholar 

    Moss R (1974) Winter diets, gut lengths, and interspecific competition in Alaskan ptarmigan. Auk 91:737–746
    Google Scholar 

    Moss R (1983) Gut size, body weight, and digestion of winter foods by grouse and ptarmigan. Condor 85:185–193
    Google Scholar 

    Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York, NY, USA
    Google Scholar 

    New Mexico Department of Game and Fish (2016) White-tailed ptarmigan (Lagopus leucura) recovery plan. New Mexico Department of Game and Fish, Wildlife Management Division, Santa Fe, NM, USA

    NOAA National Centers for Environmental Prediction (NCEP) (2018) NCEP-NCAR Reanalysis montly zonal and meridional winds at standard pressure levels on a 2.5 lat/lon grid. NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2017) vegan: community ecology package version 2.4-3. https://cran.r-project.org/package=vegan

    Oyler-McCance SJ, Langin KM, Cornman RS, Fike J, Aldridge CL, Martin KM et al. (2018) Sample collection information, single nucleotide polymorphism, and microsatellite data for white-tailed ptarmigan across the species range generated in the Molecular Ecology Lab during 2016: U.S. Geological Survey data release, https://doi.org/10.5066/F7GM86GZ

    Palo RT (1984) Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520
    CAS  PubMed  Google Scholar 

    Paradis E, Schlier K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528
    Google Scholar 

    Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change. Nature 421:37–42
    CAS  PubMed  Google Scholar 

    Pedersen S, Odden M, Pedersen HC (2017) Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. Ecosphere 8:e01722
    Google Scholar 

    Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N et al. (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430
    Google Scholar 

    Persons NW, Hosner PA, Meiklejohn KA, Braun EL, Kimball RT (2016) Sorting out relationships among the grouse and ptarmigan using intron, mitochondrial, and ultra-conserved element sequences. Mol Phylogenet Evol 98:123–132
    CAS  PubMed  Google Scholar 

    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135
    CAS  PubMed  PubMed Central  Google Scholar 

    Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol part A 132:739–761
    Google Scholar 

    Price N, Lopez L, Platts AE, Lasky JR (2020) In the presence of population structure: from genomics to candidate genes underlying local adaptation. Ecol Evol 10:1889–1904
    PubMed  PubMed Central  Google Scholar 

    Pyle P (2007) Revision of molt and plumage terminology in ptarmigan (Phasianidae: Lagopus spp.) based on evolutionary considerations. Auk 124:508
    Google Scholar 

    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370
    PubMed  Google Scholar 

    Resano-Mayor J, Korner-Nievergelt F, Vignali S, Horrenberger N, Barras AG, Braunisch V et al. (2019) Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change. Biodivers Conserv 28:2669
    Google Scholar 

    Rolando A, Laiolo P, Formica M (1997) A comparative analysis of the foraging behaviour of the chough Pyrrhocorax pyrrhocorax and the Alpine chough Pyrrhocorax graculus coexisting in the Alps. Ibis 139:461–467
    Google Scholar 

    Rundel PW, Millar CI (2016) Alpine Ecosystems. In: Zavaleta E, Mooney H (eds) Ecosystems of California. University of California, Berkeley, CA, USA, p 613–634
    Google Scholar 

    Salomonsen F (1936) On a new race of willow grouse. Bull Br Ornithol Club 56:99–100
    Google Scholar 

    Singh CP (2008) Alpine ecosystems in relation to climate change. ISG Newsl 14:54–55
    Google Scholar 

    Slatkin M (2008) Linkage disequilibrium: understanding the genetic past and mapping the medical future. Nat Rev Genet 9:477–485
    CAS  PubMed  PubMed Central  Google Scholar 

    Somero G (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers. J Exp Biol 213:912–920
    CAS  Google Scholar 

    Spear SL, Aldridge CL, Wann GT, Braun CE (2019) Fine-scale habitat selection by breeding white-tailed ptarmigan in Colorado. J Wildl Manage 84:172–184
    Google Scholar 

    Stokken K-A (1993) Energetics and adaptations to cold in ptarmigan in winter. Ornis Scand 23:366–370
    Google Scholar 

    Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688
    CAS  PubMed  Google Scholar 

    Swanson DL, King MO, Harmon E (2014) Seasonal variation in pectoralis muscle and heart myostatin and tolloid-like proteinases in small birds: a regulatory role for seasonal phenotypic flexibility? J Comp Physiol B 184:249–258
    CAS  PubMed  Google Scholar 

    Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251
    Google Scholar 

    Thornton PE, Thornton MM, Mayer BW, Wei Y, Devarakonda R, Vose RS et al. (2018) Daymet: daily surface weather data on a 1-km grid for North America, version 3. Oak Ridge, Tennessee, USA

    Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027
    Google Scholar 

    United States Fish and Wildlife Service (2012) Endangered and threatened wildlife and plants; 90-day finding on a petition to list the southern white-tailed ptarmigan and the Mt. Rainier white-tailed ptarmigan as threatened with critical habitat. Fed Regist 77:33143–33155
    Google Scholar 

    United States Geological Survey EROS Center (2007) North American elevation 1-kilometer resolution, 3rd edn. National Atlas of the US, Reston, VA
    Google Scholar 

    Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA (2017) Evaluation of LD decay and various LD‑decay estimators in simulated and SNP‑array data of tetraploid potato. Theor Appl Genet 130:123–135
    PubMed  Google Scholar 

    Walker WP, Aradhya S, Hu C-L, Shen S, Zhang W, Azarani A et al. (2007) Genetic analysis of attractin homologs. Genesis 45:744–756
    CAS  PubMed  Google Scholar 

    Walker WP, Gunn TM (2010) Shades of meaning: the pigment-type switching system as a tool for discovery. Pigment Cell Melanoma Res 23:485–495
    CAS  PubMed  Google Scholar 

    Wang G, Hobbs NT, Galbraith H, Giesen KM (2002a) Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA. Int J Biometeorol 46:197–201
    PubMed  Google Scholar 

    Wang G, Hobbs NT, Giesen KM, Galbraith H, Ojima DS, Braun CE (2002b) Relationships between climate and population dynamics of white-tailed ptarmigan Lagopus leucurus in Rocky Mountain National Park, Colorado, USA. Clim Res 23:81–87
    Google Scholar 

    Wann GT, Aldridge CL, Braun CE (2014) Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years. Popul Ecol 56:555–567
    Google Scholar 

    Wann GT, Aldridge CL, Braun CE (2016) Effects of seasonal weather on breeding phenology and reproductive success of alpine ptarmigan in Colorado. PLoS ONE 11:e0158913
    PubMed  PubMed Central  Google Scholar 

    Wann GT, Aldridge CL, Seglund AE, Oyler‐McCance SJ, Kondratieff BC, Braun CE (2019) Mismatches between breeding phenology and resource abundance of resident alpine ptarmigan negatively affect chick survival. Ecol Evol 9:7200–7212
    PubMed  PubMed Central  Google Scholar 

    Weeden RB (1967) Seasonal and geographic variation in the foods of adult white-tailed ptarmigan. Condor 69:303–309
    Google Scholar 

    Werhahn G, Liu Y, Meng Y, Cheng C, Lu Z, Atzeni L et al. (2020) Himalayan wolf distribution and admixture based on multiple genetic markers J Biogeogr https://doi.org/10.1111/jbi.13824
    Article  Google Scholar 

    Wiebe KL, Martin K (1998) Costs and benefits of nest cover for ptarmigan: changes within and between years. Anim Behav 56:1137–1144
    CAS  PubMed  Google Scholar 

    Wilson S, Martin K (2008) Breeding habitat selection of sympatric white-tailed, rock and willow ptarmigan in the southern Yukon Territory, Canada. J Ornithol 149:629–637
    Google Scholar 

    Wilson S, Martin K (2011) Life-history and demographic variation in an alpine specialist at the latitudinal extremes of the range. Popul Ecol 53:459–471
    Google Scholar 

    Xin J-W, Chai Z-X, Zhang C-F, Zhang Q, Zhu Y, Cao H-W et al. (2019) Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments. Sci Rep 9:7558
    PubMed  PubMed Central  Google Scholar 

    Zimova M, Hackländer K, Good JM, Melo-Ferreira J, Alves PC, Mills LS (2018) Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biol Rev 93:1478–1498
    PubMed  Google Scholar  More

  • in

    A nutrient control on marine anoxia during the end-Permian mass extinction

    1.
    Burgess, S. D., Bowring, S. & Shen, S.-Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
    Google Scholar 
    2.
    Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).
    Google Scholar 

    3.
    Cao, C. et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).
    Google Scholar 

    4.
    Nabbefeld, B. et al. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet. Sci. Lett. 291, 84–96 (2010).
    Google Scholar 

    5.
    Brennecka, G. A., Herrmann, A. D., Anbar, A. D. & Algeo, T. J. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).
    Google Scholar 

    6.
    Dustira, A. M. et al. Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 303–313 (2013).
    Google Scholar 

    7.
    Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).
    Google Scholar 

    8.
    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).
    Google Scholar 

    9.
    Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).
    Google Scholar 

    10.
    Hotinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G. & Arthur, M. A. Ocean stagnation and end-Permian anoxia. Geology 29, 7–10 (2001).
    Google Scholar 

    11.
    Meyer, K., Kump, L. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).
    Google Scholar 

    12.
    Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).
    Google Scholar 

    13.
    Shen, J. et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Sci. Rev. 149, 136–162 (2015).
    Google Scholar 

    14.
    Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
    Google Scholar 

    15.
    Sephton, M. A. et al. Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33, 941–944 (2005).
    Google Scholar 

    16.
    Sun, H. et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proc. Natl Acad. Sci. USA 115, 3782–3787 (2018).
    Google Scholar 

    17.
    Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).
    Google Scholar 

    18.
    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
    Google Scholar 

    19.
    Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).
    Google Scholar 

    20.
    Algeo, T. et al. Evidence for a diachronous late Permian marine crisis from the Canadian Arctic region. Geol. Soc. Am. Bull. 124, 1424–1448 (2012).
    Google Scholar 

    21.
    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).
    Google Scholar 

    22.
    Krom, M. D. & Berner, R. A. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45, 207–216 (1981).
    Google Scholar 

    23.
    Slomp, C. P., Van Der Gaast, S. J. & Van Raaphorst, W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 52, 55–73 (1996).
    Google Scholar 

    24.
    Schenau, S. J. & De Lange, G. J. A novel chemical method to quantify fish debris in marine sediments. Limnol. Oceanogr. 45, 963–971 (2000).
    Google Scholar 

    25.
    Ruttenberg, K. C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460–1482 (1992).
    Google Scholar 

    26.
    Egger, M., Jilbert, T., Behrends, T., Rivard, C. & Slomp, C. P. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169, 217–235 (2015).
    Google Scholar 

    27.
    Cappellen, P. V. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
    Google Scholar 

    28.
    Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).
    Google Scholar 

    29.
    Harland, W. The Geology of Svalbard (Geological Society, 1997).

    30.
    Blomeier, D., Dustira, A. M., Forke, H. & Scheibner, C. Facies analysis and depositional environments of a storm-dominated, temperate to cold, mixed siliceous–carbonate ramp: the Permian Kapp Starostin Formation in NE Svalbard. Nor. J. Geol. 93, 75–93 (2013).
    Google Scholar 

    31.
    Zuchuat, V. et al. A new high-resolution stratigraphic and palaeoenvironmental record spanning the end-Permian mass extinction and its aftermath in central Spitsbergen, Svalbard. Palaeogeogr. Palaeoclimatol. Palaeoecol. 554, 109732 (2020).

    32.
    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).
    Google Scholar 

    33.
    Algeo, T. & Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol. 268, 211–225 (2009).
    Google Scholar 

    34.
    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).
    Google Scholar 

    35.
    Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).
    Google Scholar 

    36.
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
    Google Scholar 

    37.
    Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006).
    Google Scholar 

    38.
    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).
    Google Scholar 

    39.
    Doyle, K. A., Poulton, S. W., Newton, R. J., Podkovyrov, V. N. & Bekker, A. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Res. 317, 196–210 (2018).
    Google Scholar 

    40.
    Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).
    Google Scholar 

    41.
    Chafetz, H. S. & Reid, A. Syndepositional shallow-water precipitation of glauconitic minerals. Sediment. Geol. 136, 29–42 (2000).
    Google Scholar 

    42.
    Peters, S. E. & Gaines, R. R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).
    Google Scholar 

    43.
    Manwell, C. Oxygen equilibrium of brachiopod Lingula hemerythrin. Science 132, 550–551 (1960).
    Google Scholar 

    44.
    Peng, Y., Shi, G. R., Gao, Y., He, W. & Shen, S. How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 118–131 (2007).
    Google Scholar 

    45.
    Scott, C. & Lyons, T. W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem. Geol. 324-325, 19–27 (2012).
    Google Scholar 

    46.
    Lyons, T. W. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim. Cosmochim. Acta 61, 3367–3382 (1997).
    Google Scholar 

    47.
    Shen, Y., Canfield, D. E. & Knoll, A. H. Middle proterozoic ocean chemistry: evidence from the McArthur Basin, Northern Australia. Am. J. Sci. 302, 81–109 (2002).
    Google Scholar 

    48.
    Borgnino, L., Avena, M. & De Pauli, C. Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids Surf. A 341, 46–52 (2009).
    Google Scholar 

    49.
    Foster, W. J., Danise, S. & Twitchett, R. J. A silicified Early Triassic marine assemblage from Svalbard. J. Syst. Palaeontol. 15, 851–877 (2017).
    Google Scholar 

    50.
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).
    Google Scholar 

    51.
    Wedepohl, K. H. in Metals and Their Compounds in the Environment (ed. Merian, E.) 3–17 (Verlag Chemie, 1991).

    52.
    Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–393 (2019).
    Google Scholar 

    53.
    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).
    Google Scholar  More

  • in

    High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing

    1.
    Sato, T., Ikeda, O., Yamakoshi, Y. & Tsubouchi, M. X-ray tomography for microstructural objects. Appl. Opt. 20, 3880–3883 (1981).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Elliott, J. C. & Dover, S. D. X-ray microtomography. J. Microsc. 126, 211–213 (1982).
    CAS  PubMed  Google Scholar 

    3.
    Elliott, J. C. & Dover, S. D. X-ray microscopy using computerized axial tomography. J. Microsc. 138, 329–331 (1985).
    CAS  PubMed  Google Scholar 

    4.
    Sutton, M., Rahman, I. & Garwood, R. Techniques for Virtual Palaeontology 208 (Wiley-Blackwell, London, 2014).
    Google Scholar 

    5.
    Davies, T. G. et al. Open data and digital morphology. Proc. R. Soc. B 284, 20170194 (2017).
    PubMed  Google Scholar 

    6.
    Gutiérrez, Y., Ott, D., Töpperwien, M., Salditt, T. & Scherber, C. X-ray computed tomography and its potential in ecological research: a review of studies and optimization of specimen preparation. Ecol. Evol. 8, 7717–7732 (2018).
    PubMed  PubMed Central  Google Scholar 

    7.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Ketcham, R. A. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 32–41 (2005).
    ADS  Google Scholar 

    9.
    Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).
    Google Scholar 

    10.
    Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T. & Arvanitidis, C. Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263, 1–45 (2013).
    Google Scholar 

    11.
    Akkari, N. et al. New avatars for Myriapods: complete 3D morphology of type specimens transcends conventional species description (Myriapoda, Chilopoda). PLoS ONE 13, 0200158. https://doi.org/10.1371/journal.pone.0200158 (2018).
    CAS  Article  Google Scholar 

    12.
    Fontaine, B., Perrard, A. & Bouchet, P. 21 years of shelf life between discovery and description of new species. Curr. Biol. 22, R943–R944 (2012).
    CAS  PubMed  Google Scholar 

    13.
    Hipsley, C. A. & Sherratt, E. Psychology, not technology, is our biggest challenge to open digital morphology data. Sci. Data. 6, 41 (2019).
    PubMed  PubMed Central  Google Scholar 

    14.
    Blagoderov, V., Kitching, I. J., Livermore, L., Simonsen, T. J. & Smith, V. S. No specimen left behind: industrial scale digitization of natural history collections. Zookeys 209, 133–146 (2012).
    Google Scholar 

    15.
    Rogers, N. Museum drawers go digital. Science 352, 762–765 (2016).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170386 (2018).
    Google Scholar 

    17.
    Schmitt, C. J., Cook, J. A., Zamudio, K. R. & Edwards, S. V. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170387 (2018).
    Google Scholar 

    18.
    Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).
    Google Scholar 

    19.
    Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl. Acad. Sci. 116, 14688–14697 (2019).
    CAS  PubMed  Google Scholar 

    20.
    Simon, M. N., Machado, F. A. & Marroig, G. High evolutionary constraints limited adaptive responses to past climate changes in toad skulls. Proc. R. Soc. B-Biol. Sci. 283, 20161783 (2016).
    Google Scholar 

    21.
    Sherratt, E., Serb, J. M. & Adams, D. C. Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops. BMC Evol. Biol. 17, 248 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Chira, A. M. et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21, 1505–1514 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Percival, C. J. et al. The effect of automated landmark identification on morphometric analyses. J. Anat. 234, 917–935 (2019).
    PubMed  PubMed Central  Google Scholar 

    24.
    Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro –computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).
    Google Scholar 

    25.
    Broeckhoven, C. & du Plessis, A. X-ray microtomography in herpetological research: a review. Amphibia-Reptilia 39, 377–401 (2018).
    Google Scholar 

    26.
    Marcy, A. E., Fruciano, C., Phillips, M. J., Mardon, K. & Weisbecker, V. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses. PeerJ 6, 5032. https://doi.org/10.7717/peerj.5032 (2018).
    Article  Google Scholar 

    27.
    Gray, J. A., McDowell, M. C., Hutchinson, M. N. & Jones, M. E. Geometric morphometrics provides an alternative approach for interpreting the affinity of fossil lizard jaws. J. Herpetol. 51, 375–382 (2017).
    Google Scholar 

    28.
    Thorn, K. M., Hutchinson, M. N., Archer, M. & Lee, M. S. Y. A new scincid lizard from the Miocene of northern Australia, and the evolutionary history of social skinks (Scincidae: Egerniinae). J. Vertebr. Paleontol. 39, 1 (2019).
    Google Scholar 

    29.
    Chaplin, K., Sumner, J., Hipsley, C. A. & Melville, J. An integrative approach using phylogenomics and high-resolution X-ray computed tomography for species delimitation in cryptic taxa. Syst. Biol. 69, syz048. https://doi.org/10.1093/sysbio/syz048 (2019).
    Article  Google Scholar 

    30.
    Melville, J. et al. Integrating phylogeography and high-resolution X-ray CT reveals five new cryptic species and multiple hybrid zones among Australian earless dragons. R. Soc. Open Sci. 6, 191166. https://doi.org/10.1098/rsos.191166 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Caro, A., Gómez-Moliner, B. J. & Madeira, M. J. Integrating multilocus DNA data and 3D geometric morphometrics to elucidate species boundaries in the case of Pyrenaearia (Pulmonata: Hygromiidae). Mol. Phylogenet. Evol. 132, 194–206 (2019).
    CAS  PubMed  Google Scholar 

    32.
    Winkelmann, C. T. & Wise, L. D. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J. Pharmacol. Tox. Met. 59, 156–165 (2009).
    CAS  Google Scholar 

    33.
    Sevilla, R. S. et al. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis. Bone 73, 32–41 (2015).
    PubMed  Google Scholar 

    34.
    Wong, M. D., Maezawa, Y., Lerch, J. P. & Henkelman, R. M. Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT. Development 141, 2533–2541 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Wu, D. et al. Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J. Exp. Bot. 70, 545–561 (2019).
    CAS  PubMed  Google Scholar 

    36.
    Ding, Y. et al. Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography. Elife 8, 44898. https://doi.org/10.7554/eLife.44898.001 (2019).
    Article  Google Scholar 

    37.
    Staedtler, Y. M., Masson, D. & Schönenberger, J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS ONE 8, 75295. https://doi.org/10.1371/journal.pone.0075295 (2013).
    ADS  CAS  Article  Google Scholar 

    38.
    Keklikoglou, K. et al. Micro-computed tomography for natural history specimens: a handbook of best practice protocols. Eur. J. Taxon. 522, 1–55 (2019).
    Google Scholar 

    39.
    Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph (2019).

    40.
    Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
    PubMed  Google Scholar 

    41.
    du Plessis, A., Broeckhoven, C., Guelpa, A. & le Roux, S. G. Laboratory X-ray micro-computed tomography: a user guideline for biological samples. Gigascience 6, 1–11 (2017).
    PubMed  PubMed Central  Google Scholar 

    42.
    Hocknull, S. A., Zhao, J. X., Feng, Y. X. & Webb, G. E. Responses of middle Pleistocene rainforest vertebrates to climate change in Australia. Earth Planet. Sci. Lett. 264, 317–331 (2007).
    ADS  CAS  Google Scholar 

    43.
    Hedrick, B. P. et al. Digitization and the future of natural history collections. Bioscience 70, 243–251 (2020).
    Google Scholar 

    44.
    Lawrence, R. A. & Hocknull, S. Engaging the public with small vertebrate fossils and utilizing citizen science to maximise scientific discovery at Capricorn Caves, Central Eastern Queensland, Australia. J. Vertebr. Paleontol. Program Abstr. 139 (2019).

    45.
    Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Arbour, J. H., Curtis, A. A. & Santana, S. E. Signatures of echolocation and dietary ecology in the adaptive evolution of skull shape in bats. Nat. Commun. 10, 2036 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    47.
    Park, T., Fitzgerald, E. M. & Evans, A. R. Ultrasonic hearing and echolocation in the earliest toothed whales. Biol. Lett. 12, 20160060. https://doi.org/10.1098/rsbl.2016.0060 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Müller, J. et al. Eocene lizard from Germany reveals amphisbaenian origins. Nature 473, 364–367 (2011).
    ADS  PubMed  Google Scholar 

    49.
    Miralles, A. et al. Distinct patterns of desynchronized limb regression in Malagasy scincine lizards (Squamata, Scincidae). PLoS ONE 10, 0126074. https://doi.org/10.1371/journal.pone.0126074 (2015).
    CAS  Article  Google Scholar 

    50.
    Weisbecker, V. Monotreme ossification sequences and the riddle of mammalian skeletal development. Evolution 65, 1323–1335 (2011).
    PubMed  Google Scholar 

    51.
    Newton, A. H. et al. Letting the ‘cat’ out of the bag: pouch young development of the extinct Tasmanian tiger revealed by X-ray computed tomography. R. Soc. Open Sci. 5, 171914. https://doi.org/10.1098/rsos.171914 (2018).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Beaudet, A. & Gilissen, E. Fossil primate endocasts: perspectives from advanced imaging techniques In Digital Endocasts: from Skulls to Brains (eds. Bruner, E., Ogihara, N. & Tanabe, H.) 47–58 (Springer, Berlin, 2018).

    54.
    Wulff, N. C., Lehmann, A. W., Hipsley, C. A. & Lehmann, G. U. C. Copulatory courtship by bushcricket genital titillators revealed by functional morphology, μCT scanning for 3D reconstruction and female sense structures. Arthropod Struct. Dev. 44, 388–397 (2015).
    PubMed  Google Scholar 

    55.
    Gee, C. T. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: a virtual advantage over thin-sectioning. Appl. Plant Sci. 1, 1300039. https://doi.org/10.3732/apps.1300039 (2013).
    Article  Google Scholar 

    56.
    Meyer, M. et al. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res. 249, 79–87 (2014).
    ADS  CAS  Google Scholar 

    57.
    Gooday, A. J., Sykes, D., Goral, T., Zubkov, M. V. & Glover, A. G. Micro-CT 3D imaging reveals the internal structure of three abyssal xenophyophore species (Protista, Foraminifera) from the eastern equatorial Pacific Ocean. Sci. Rep. 8, 12103. https://doi.org/10.1038/s41598-018-30186-2 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Dunlop, J. A. et al. Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus. BMC Evol. Biol. 16, 203 (2016).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Climate-driven changes in the composition of New World plant communities

    1.
    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).
    CAS  Google Scholar 
    2.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    CAS  Google Scholar 

    3.
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).
    Google Scholar 

    4.
    Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103 (2013).
    CAS  Google Scholar 

    5.
    Jump, A. S., Huang, T. J. & Chou, C. H. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210 (2012).
    Google Scholar 

    6.
    Angelo, C. L. & Daehler, C. C. Upward expansion of fire‐adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).
    Google Scholar 

    7.
    Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).
    CAS  Google Scholar 

    8.
    Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).
    Google Scholar 

    9.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  Google Scholar 

    10.
    Moret, P., Muriel, P., Jaramillo, R. & Dangles, O. Humboldt’s tableau physique revisited. Proc. Natl Acad. Sci. USA 116, 12889–12894 (2019).
    CAS  Google Scholar 

    11.
    Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
    Google Scholar 

    12.
    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
    CAS  Google Scholar 

    13.
    Feeley, K. J. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob. Change Biol. 18, 1335–1341 (2012).
    Google Scholar 

    14.
    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).
    Google Scholar 

    15.
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
    Google Scholar 

    16.
    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).
    CAS  Google Scholar 

    17.
    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).
    CAS  Google Scholar 

    18.
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl Acad. Sci. USA 116, 587–592 (2019).
    CAS  Google Scholar 

    19.
    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
    CAS  Google Scholar 

    20.
    Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).
    Google Scholar 

    21.
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
    Google Scholar 

    22.
    Duque, A., Stevenson, P. & Feeley, K. J. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl Acad. Sci. USA 112, 10744–10749 (2015).
    CAS  Google Scholar 

    23.
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).
    CAS  Google Scholar 

    24.
    Feeley, K. J., Hurtado, J., Saatchi, S., Silman, M. R. & Clark, D. B. Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob. Change Biol. 19, 3472–3480 (2013).
    Google Scholar 

    25.
    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).
    Google Scholar 

    26.
    Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
    Google Scholar 

    27.
    Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).
    Google Scholar 

    28.
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
    Google Scholar 

    29.
    Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024 (2018).
    Google Scholar 

    30.
    Strzepek, K., Yohe, G., Neumann, J. & Boehlert, B. Characterizing changes in drought risk for the United States from climate change. Environ. Res. Lett. 5, 044012 (2010).
    Google Scholar 

    31.
    Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dynam. 31, 79–105 (2008).
    Google Scholar 

    32.
    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).
    CAS  Google Scholar 

    33.
    Conradi, T., Van Meerbeek, K., Ordonez, A. & Svenning, J. C. Biogeographic historical legacies in the net primary productivity of Northern Hemisphere forests. Ecol. Lett. 23, 800–810 (2020).

    34.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    Google Scholar 

    35.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 

    36.
    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
    Google Scholar 

    37.
    Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).
    Google Scholar 

    38.
    DeWalt, S. J., Bourdy, G., de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of Northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).
    Google Scholar 

    39.
    Enquist, B. & Boyle, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. 4, 288 (2012).
    Google Scholar 

    40.
    Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at https://peerj.com/preprints/2615/ (2016).

    41.
    Fegraus, E. Tropical Ecology Assessment and Monitoring Network (TEAM Network). Biodivers. Ecol. 4, 287 (2012).
    Google Scholar 

    42.
    Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
    Google Scholar 

    43.
    Peet, R. K. et al. Vegetation-plot database of the Carolina Vegetation Survey. Biodivers. Ecol. 4, 243–253 (2012).
    Google Scholar 

    44.
    Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank: a permanent, open-access archive for vegetation plot data. Biodivers. Ecol. 4, 233–241 (2012).
    Google Scholar 

    45.
    Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).
    Google Scholar 

    46.
    König, C. et al. Biodiversity data integration—the significance of data resolution and domain. PLoS Biol. 17, e3000183 (2019).
    Google Scholar 

    47.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 

    48.
    Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).
    Google Scholar 

    49.
    Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. Directional changes in the species composition of a tropical forest. Ecology 92, 871–882 (2011).
    Google Scholar 

    50.
    Gosselin, F. Putting floristic thermophilization in forests into a conservation biology perspective: beyond mean trait approaches. Ann. For. Sci. 73, 215–218 (2016).
    Google Scholar 

    51.
    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).
    Google Scholar 

    52.
    Stevens, J. T., Safford, H. D., Harrison, S. & Latimer, A. M. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263 (2015).
    Google Scholar 

    53.
    Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827–829 (2004).
    CAS  Google Scholar 

    54.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    55.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
    Google Scholar 

    56.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar  More

  • in

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Berend K, Haynes K, MacKenzie CM (2019) Common garden experiments as a dynamic tool for ecological studies of alpine plants and communities in northeastern north America. Rhodora 121:174–212
    Google Scholar 

    Berli FJ, Alonso R, Bressan-Smith R, Bottini R (2013) UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiol Plant 149:127–140
    CAS  PubMed  Google Scholar 

    Camadro EL (2012) Relevance of the genetic structure of natural populations, and sampling and classification approaches for conservation and use of wild crop relatives: potato as an example. Botany 90(11):1065–1072
    Google Scholar 

    Cara N, Marfil CF, Masuelli RW (2013) Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum. Ecol Evol 3:3764–3779
    PubMed  PubMed Central  Google Scholar 

    Castonguay E, Angers B (2012) The key role of epigenetics in the persistence of asexual lineages. Genet Res Int 2012:1–9
    Google Scholar 

    Coneva V, Chitwood DH (2018) Genetic and developmental basis for increased leaf thickness in the Arabidopsis cvi ecotype. Front Plant Sci 9:1–10.
    Google Scholar 

    Cooper HF, Grady KC, Cowan JA, Best RJ, Allan GJ, Whitham TG (2019) Genotypic variation in phenological plasticity: Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Glob Change Biol 25:187–200
    Google Scholar 

    Correll D (1962) The potato and its wild relatives. Texas Research Foundation, Renner, TX

    Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K et al. (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148
    CAS  PubMed  Google Scholar 

    Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:1–14.
    Google Scholar 

    Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161
    CAS  PubMed  Google Scholar 

    Donelson JM, Salinas S, Munday PL, Shama LN (2017) Transgenerational plasticity and climate change experiments: Where do we go from here? Glob Change Biol 24:13–34
    Google Scholar 

    Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ, Casale FP et al. (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4:e05255
    PubMed  PubMed Central  Google Scholar 

    Erazzú LE, Camadro EL, Clausen AM (2009) Persistence over time, overlapping distribution and molecular indications of interspecific hybridization in wild potato populations of Northwest Argentina. Euphytica 168:249–262
    Google Scholar 

    FAO UN (2018) FAOstat. http://www.fao.org/faostat/en/#data/QC. Accessed 29 Dec 2018.

    Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:1–9
    Google Scholar 

    Gao L, Geng Y, Li B, Chen J, Yang J (2010) Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: Implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant Cell Environ 33:1820–1827
    CAS  PubMed  Google Scholar 

    Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001) Consistency of species ranking based on functional leaf traits. N Phytologist 152:69–83
    Google Scholar 

    Godoy O, Valladares F, Castro‐Díez P (2012) The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. N Phytologist 195:912–922
    Google Scholar 

    González APR, Preite V, Verhoeven KJF, Latzel V (2018) Transgenerational effects and epigenetic memory in the clonal plant Trifolium repens. Front Plant Sci 9:1–11
    Google Scholar 

    Hawkes JG (1954) The ecology of wild potato species and its bearing on the origin of potato cultivation. J d’Agriculture Traditionnelle et de Botanique Appliquée 1:356–358
    Google Scholar 

    Hawkes JG, Hjerting JP (1969) The potatoes of Argentina, Brazil, Paraguay and Uruguay. A biosystematic study. Clarendon Press, Oxford, UK
    Google Scholar 

    Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20:1675–1688
    CAS  PubMed  Google Scholar 

    Hijmans RJ, Spooner DM, Salas AR, Guarino L, de la Cruz J (2002) Atlas of wild potatoes. International Plant Genetic Resources Institute, Rome

    Hiatt D, Flory SL (2020) Populations of a widespread invader and co‐occurring native species vary in phenotypic plasticity. N Phytologist 225:584–594
    CAS  Google Scholar 

    Ibañez VN, Berli FJ, Masuelli RW, Bottini RA, Marfil CF (2017) Influence of altitude and enhanced ultraviolet-B radiation on tuber production, seed viability, leaf pigments and morphology in the wild potato species Solanum kurtzianum Bitter and Wittm collected from an elevational gradient. Plant Sci 261:60–68
    PubMed  Google Scholar 

    IPCC (2014) Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, In: Core Writing Team, RK Pachauri, LA Meyer (eds). IPCC, Geneva, Switzerland, p 151

    Jansky SH, Simon R, Spooner DM (2006) A test of taxonomic predictivity: resistance to white mold in wild relatives of cultivated potato. Crop Sci 46:2561–2570
    Google Scholar 

    Jansky SH, Simon R, Spooner DM (2009) A test of taxonomic predictivity: resistance to the colorado potato beetle in wild relatives of cultivated potato. J Economic Entomol 102:422–431
    CAS  Google Scholar 

    Kassambara A, Mundt F (2017) Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.5.

    Kelly M (2019) Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc B 374:20180176
    Google Scholar 

    Kooke R, Johannes F, Wardenaar R, Becker F, Etcheverry M, Colot, Vreugdenhil D, Keurentjes JJB (2015) Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell 27:337–348
    CAS  PubMed  PubMed Central  Google Scholar 

    Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O (2013) Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun 4:1–7
    Google Scholar 

    Le S, Julie J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18
    Google Scholar 

    Lira-Madeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5:1–8
    Google Scholar 

    Marfil CF, Camadro EL, Masuelli RW (2009) Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol 9:1–16.
    Google Scholar 

    Marfil CF, Asurmendi S, Masuelli RW (2012) Changes in micro RNA expression in a wild tuber-bearing Solanum species induced by 5-Azacytidine treatment. Plant Cell Rep 31:1449–1461
    CAS  PubMed  Google Scholar 

    Marfil CF, Masuelli RW (2014) Reproductive ecology and genetic variability in natural populations of the wild potato, Solanum kurtzianum. Plant Biol 16:485–494
    CAS  PubMed  Google Scholar 

    Marfil CF, Hidalgo V, Masuelli RW (2015) In situ conservation of wild potato germplasm in Argentina: example and possibilities. Glob Ecol Conserv 3:461–476
    Google Scholar 

    Marfil CF, Duarte P, Masuelli RW (2018) Phenotypic and epigenetic variation induced in newly synthesized allopolyploids and autopolyploids of potato. Scientia Horticulturae 234:101–109
    Google Scholar 

    Masuelli RW, Camadro EL, Erazzú LE, Bedogni MC, Marfil CF (2009) Homoploid hybridization in the origin and evolution of wild diploid potato species. Plant Syst Evol 277:143–151
    Google Scholar 

    McGregor CE, van Treuren R, Hoekstra R, van Hintum TJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. TAG. Theor Appl Genet 104:146–156
    CAS  PubMed  Google Scholar 

    Medrano M, Herrera CM, Bazaga P (2014) Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol Ecol 23:4926–4938
    CAS  PubMed  Google Scholar 

    Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends plant Sci 15:684–692
    CAS  PubMed  Google Scholar 

    Nicotra AB, Segal DL, Hoyle GL, Schrey AW, Verhoeven KJF, Richards CL (2015) Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol Evolution 5:634–647
    Google Scholar 

    O’Dea RE, Noble DW, Johnson SL, Hesselson D, Nakagawa S (2016) The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ Epigenetics 2:1–12.
    Google Scholar 

    Oksanen J,(2015) Multivariate analysis of ecological communities in R: vegan tutorial. R Documentation. 1:11–12

    Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E et al. (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. N Phytologist 190:724–739
    Google Scholar 

    Pimpinelli S, Piacentini L (2019) Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 00:1–14
    Google Scholar 

    Preite V, Snoek LB, Oplaat C, Biere A, Van Der Putten WH, Verhoeven KJF (2015) The epigenetic footprint of poleward range-expanding plants in apomictic dandelions. Mol Ecol 24:4406–4418
    CAS  PubMed  Google Scholar 

    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M et al. (2017) Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol Lett 20:1576–1590
    PubMed  Google Scholar 

    Richards EJ (2006) Inherited epigenetic variation revisiting soft inheritance. Nat Rev Genet 7:395–401
    CAS  PubMed  Google Scholar 

    Schulz B, Eckstein RL, Durka W (2013) Scoring and analysis of methylation‐sensitive amplification polymorphisms for epigenetic population studies. Mol Ecol Resour 13:642–653
    CAS  PubMed  Google Scholar 

    Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK (2015) Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ 38:1658–1672
    CAS  PubMed  Google Scholar 

    Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. WH Freeman and Company, San Francisco, USA
    Google Scholar 

    Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96:1177–1189
    CAS  PubMed  Google Scholar 

    Spooner DM, Jansky SH, Simon R (2009) Tests of taxonomic and biogeographic predictivity: resistance to disease and insect pests in wild relatives of cultivated potato. Crop Sci 49:1367–1376
    Google Scholar 

    Tricker PJ, Gibbings JG, Rodríguez López CM, Hadley P, Wilkinson MJ (2012) Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J Exp Bot 63:3799–3813
    CAS  PubMed  PubMed Central  Google Scholar 

    Valladares F, Sanchez-Gomez D, Zavala M (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116
    Google Scholar 

    Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. N Phytologist 185:1108–1118
    CAS  Google Scholar 

    Verhoeven KJF, Preite V (2014) Epigenetic variation in asexually reproducing organisms. Evolution 68:644–655
    PubMed  Google Scholar 

    Verhoeven KJF, Von Holdt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol 25:1631–1638
    PubMed  Google Scholar 

    Wei N, Cronn R, Liston A, Ashman TL (2019) Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. N Phytologist 221:2286–2297
    Google Scholar 

    Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S et al. (2017) Global climatic drivers of leaf size. Science 357:917–921
    CAS  PubMed  Google Scholar 

    Zhang YY, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. N Phytologist 197:314–322
    CAS  Google Scholar  More

  • in

    Untangling the seasonal dynamics of plant-pollinator communities

    1.
    Olesen, J. M., Bascompte, J., Elberling, H. & Jordano, P. Temporal dynamics in a pollination network. Ecology 89, 1573–1582 (2008).
    PubMed  Google Scholar 
    2.
    Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B 365, 2081–2091 (2010).
    Google Scholar 

    3.
    Menke, S., Böhning-Gaese, K. & Schleuning, M. Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121, 1553–1566 (2012).
    Google Scholar 

    4.
    Aizen, M. A., Morales, C. L. & Morales, J. M. Invasive mutualists erode native pollination webs. PLoS Biol. 6, e31 (2008).
    PubMed  PubMed Central  Google Scholar 

    5.
    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).
    ADS  CAS  PubMed  Google Scholar 

    6.
    Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).
    Google Scholar 

    7.
    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Google Scholar 

    8.
    Holt, R. D. & Kotler, B. P. Short-term apparent competition. Am. Nat. 130, 412–430 (1987).
    Google Scholar 

    9.
    May, R. M. Will a large complex system be stable? Nature 238, 413 (1972).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
    ADS  PubMed  Google Scholar 

    11.
    de Ruiter, P. C., Wolters, V., Moore, J. C. & Winemiller, K. O. Food web ecology: playing jenga and beyond. Science 309, 68–71 (2005).
    PubMed  Google Scholar 

    12.
    Ings, T. C. et al. Ecological networks–beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).
    PubMed  Google Scholar 

    13.
    Simanonok, M. P. & Burkle, L. A. Partitioning interaction turnover among alpine pollination networks: spatial, temporal, and environmental patterns. Ecosphere 5, 1–17 (2014).
    Google Scholar 

    14.
    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).
    PubMed  Google Scholar 

    15.
    Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).
    PubMed  Google Scholar 

    16.
    Kaiser-Bunbury, C. N., Memmott, J. & Müller, C. B. Community structure of pollination webs of mauritian heathland habitats. Perspect. Plant Ecol. Evol. Sys. 11, 241–254 (2009).
    Google Scholar 

    17.
    MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).
    PubMed  Google Scholar 

    18.
    Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008).
    Google Scholar 

    19.
    Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).
    PubMed  Google Scholar 

    20.
    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species roles in an arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).
    Google Scholar 

    22.
    Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781–1787 (2009).
    Google Scholar 

    23.
    Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant–animal interactions. Ecol. Lett. 6, 69–81 (2003).
    Google Scholar 

    24.
    Díaz-Castelazo, C. et al. Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91, 793–801 (2010).
    PubMed  Google Scholar 

    25.
    Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).
    PubMed  Google Scholar 

    26.
    Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).
    PubMed  Google Scholar 

    27.
    Dáttilo, W., Guimarães, P. R. & Izzo, T. J. Spatial structure of ant–plant mutualistic networks. Oikos 122, 1643–1648 (2013).
    Google Scholar 

    28.
    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).
    PubMed  Google Scholar 

    29.
    Bramon Mora, B., Gravel, D., Gilarranz, L. J., Poisot, T. & Stouffer, D. B. Identifying a common backbone of interactions underlying food webs from different ecosystems. Nat. Commun. 9, 2603 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    30.
    Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species roles in food webs. Science 335, 1489–1492 (2012).
    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

    31.
    Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).
    Google Scholar 

    32.
    CaraDonna, P. J. & Waser, N. M. Temporal flexibility in the structure of plant–pollinator interaction networks. Oikos https://doi.org/10.1111/oik.07526 (2020).

    33.
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Chacoff, N. P., Resasco, J. & Vázquez, D. P. Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Ecology 99, 21–28 (2018).
    PubMed  Google Scholar 

    36.
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).
    ADS  CAS  PubMed  Google Scholar 

    37.
    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).
    PubMed  Google Scholar 

    38.
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
    PubMed  Google Scholar 

    39.
    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072 (2011).
    PubMed  Google Scholar 

    40.
    Goldwasser, L. & Roughgarden, J. Sampling effects and the estimation of food-web properties. Ecology 78, 41–54 (1997).
    Google Scholar 

    41.
    Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 6, 961–965 (2003).
    Google Scholar 

    42.
    Miele, V., Ramos-Jiliberto, R. & Vázquez, D. P. Core–periphery dynamics in a plant–pollinator network. Preprint at https://doi.org/10.1101/543637 (2019).

    43.
    Hackett, T. D. et al. Reshaping our understanding of species’ roles in landscape-scale networks. Ecol. Lett. 22, 1367–1377 (2019).
    PubMed  Google Scholar 

    44.
    Schwarz, B. et al. Temporal scale-dependence of plant–pollinator networks. Oikos https://doi.org/10.1111/oik.07303 (2020).

    45.
    Bascompte, J. & Melián, C. J. Simple trophic modules for complex food webs. Ecology 86, 2868–2873 (2005).
    Google Scholar 

    46.
    Kondoh, M. Building trophic modules into a persistent food web. Proc. Natl Acad. Sci. USA 105, 16631–16635 (2008).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).
    PubMed  PubMed Central  Google Scholar 

    48.
    Cagnolo, L., Salvo, A. & Valladares, G. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol. 80, 342–351 (2011).
    PubMed  Google Scholar 

    49.
    Aizen, M. A. et al. The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29–36 (2016).
    PubMed  Google Scholar 

    50.
    Junker, R. R., Höcherl, N. & Blüthgen, N. Responses to olfactory signals reflect network structure of flower-visitor interactions. J. Anim. Ecol. 79, 818–823 (2010).
    PubMed  Google Scholar 

    51.
    Coux, C., Rader, R., Bartomeus, I. & Tylianakis, J. M. Linking species functional roles to their network roles. Ecol. Lett. 19, 762–770 (2016).
    PubMed  Google Scholar 

    52.
    Bartomeus, I. et al. A common framework for identifying linkage rules across different types of interactions. Funct. Ecol. 30, 1894–1903 (2016).
    Google Scholar 

    53.
    Weinstein, B. G. & Graham, C. H. Persistent bill and corolla matching despite shifting temporal resources in tropical hummingbird-plant interactions. Ecol. Lett. 20, 326–335 (2017).
    PubMed  Google Scholar 

    54.
    Weinstein, B. G. & Graham, C. H. On comparing traits and abundance for predicting species interactions with imperfect detection. Food Webs 11, 17–25 (2017).
    Google Scholar 

    55.
    Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).
    PubMed  Google Scholar 

    56.
    Olito, C. & Fox, J. W. Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Oikos 124, 428–436 (2015).
    Google Scholar 

    57.
    Hart, D. R., Stone, L. & Berman, T. Seasonal dynamics of the lake kinneret food web: the importance of the microbial loop. Limnol. Oceanogr. 45, 350–361 (2000).
    ADS  CAS  Google Scholar 

    58.
    Pilosof, S., Fortuna, M. A., Vinarski, M. V., Korallo-Vinarskaya, N. P. & Krasnov, B. R. Temporal dynamics of direct reciprocal and indirect effects in a host–parasite network. J. Anim. Ecol. 82, 987–996 (2013).
    PubMed  Google Scholar 

    59.
    Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).
    ADS  Google Scholar 

    60.
    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).
    Google Scholar 

    61.
    CaraDonna, P. J. Temporal variation in plant-pollinator interactions, Rocky Mountain Biological Laboratory, CO, USA, 2013 – 2015 ver 1. Environmental Data Initiative, https://doi.org/10.6073/pasta/27dc02fe1655e3896f20326fed5cb95f (2020).

    62.
    Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Bramon Mora, B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks. Preprint at https://doi.org/10.1101/364703 (2018).

    64.
    Pons, P. & Latapy, M. Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10, 191–218 (2006).
    MathSciNet  MATH  Google Scholar 

    65.
    Danon, L., Diaz-Guilera, A., Duch, J. & Arenas, A. Comparing community structure identification. J. Stat. Mech.: Theory E 2005, P09008 (2005).
    MATH  Google Scholar 

    66.
    Koster, J. & McElreath, R. Multinomial analysis of behavior: statistical methods. Behav. Ecol. Sociobiol. 71, 138 (2017).
    PubMed  PubMed Central  Google Scholar 

    67.
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, London, 2018).

    68.
    Team, S. D. et al. RStan: the R interface to Stan (The R Foundation, 2019). More

  • in

    Biohydrogen production beyond the Thauer limit by precision design of artificial microbial consortia

    Microorganisms and medium composition
    C. acetobutylicum DSM 792 and E. aerogenes DSM 30053 were used for all experiments. A modified Clostridium-specific medium without yeast extract was used for growth of mono-culture C. acetobutylicum as previously described in detail elsewhere71. The medium was prepared containing (per L): 0.5 g of KH2PO4, 0.5 g of K2HPO4 and 2.2 g of NH4CH3COO and glucose or cellobiose were added at a concentration of 999 C-mmol. The pH was arranged with 1 mol L−1 NaOH to 6.8. Trace elements solution was prepared as stock 100× solution containing (per L): 0.2 g of MgSO4·7 H2O, 0.01 g of MnSO4·7H2O, 0.01 g of FeSO4·7H2O, 0.01 g of NaCl. Vitamin solution was prepared as stock 200× solution containing (per L): 0.9 g of thiamine, 0.002 g of biotin and 0.2 g of 4-aminobenzoic acid. The trace elements solution and the vitamin solution were used for all experiments. Mono-culture of E. aerogenes was grown in a defined Enterobacter-specific medium, as described elsewhere72. The Enterobacter-specific medium was prepared containing (per L): 13.3 g K2HPO4, 4 g (NH4)2HPO4, 8 mg EDTA and trace elements (2.5 mg CoCl2·6H2O, 15 mg MnCl2·4H2O, 1.5 g CuCl2·4H2O; 3 mg H3BO3; 2.5 mg Na2MoO4·2H2O, 13 mg of Zn(CH3COO)2·2H2O). Glucose and cellobiose were prepared as stock solutions. Media, trace element solution, glucose and cellobiose solutions were flushed with sterile N2 to make the solutions anaerobic and sterilized separately at 121 °C for 20 min. Sterile anaerobic solutions of glucose or cellobiose, trace elements solution and filter sterilized vitamin solution were added into the media before the inoculation inside the sterilized biological safety cabinet (BH-EN 2005, Faster Srl, Ferrara, Italy).
    Design of experiments
    A mutual medium accommodating the nutritional requirements of both organisms was designed by using the DoE approach. The buffer compositions of two species specific media described above were analysed and the optimum concentrations of AC (NH4Cl), SA (Na+ acetate) and PB (KH2PO4/K2HPO4) capacity were investigated. The setting of DoE for concentration effect of AC, SA and PB capacity was based on 29 randomized runs within concentration range from 3–30 mmol L−1 of AC, 3–150 mmol L−1 of KH2PO4 and 10–120 mmol L−1 of SA (Table 1). Each experiment was performed in triplicates (n = 3), except for set E of the DoE experiment (centre points), which were performed in pentaplicate (n = 5). The DoE experiments were performed twice (N = 2). The end of the exponential growth phase of E. aerogenes and C. acetobutylicum was reached at 45 and 51.5 h, respectively. For modelling, these time points were used. The reason for providing an acetate source in the medium was due to the possibility to add an acetate oxidizing microorganism to the co-culture consortium, which was not performed in the context of this study.
    Closed batch cultivations
    Cultures of E. aerogenes and C. acetobutylicum were grown anaerobically at 0.3 bar in a 100 Vol.-% N2 atmosphere in a closed batch set-up33. Mono-culture and consortium closed batch experiments were conducted with the final volume of 50 mL medium in 120 mL serum bottles (Ochs Glasgerätebau, Langerwehe, Germany). Each serum bottle contained 45 mL Clostridium-specific medium, Enterobacter-specific medium or E-medium, 0.25 mL vitamin solution, 3.0 mL glucose or cellobiose stock solution, 0.5 mL trace elements solution and 1.25 mL inoculum. The serum bottles were sealed with rubber stoppers (20 mm butyl ruber, Chemglass Life Science LLC, Vineland, USA). For consortium experiments, different inoculum ratios were tested and initial cell concentrations were arranged with the ratios of (E. aerogenes : C. acetobutylicum) 1:2, 1:10, 1:100, 1:1000, 1:10,000 and 1:100,000 at a temperature of 37 °C. Pre-culture of E. aerogenes was diluted in DoE E-medium (Table 1) to inoculate the organism at cell densities of aforementioned ratios. The pressure in the headspace of the serum bottles were measured individually using a manometer (digital manometer LEO1-Ei,−1…3 bar, Keller, Germany). After each measurement, the pressure was released completely from the headspace of serum bottle by penetrating the butyl rubber stopper with a sterile needle. The pressure values were added up to reveal total produced pressure (cumulative pressure). Experiments were performed three times (N = 3) and each set was performed in quadruplicates (n = 4).
    Cell counting, absorption measurements, DNA extraction and qPCR
    A volume of 1 mL of liquid sample was collected by using sterile syringes at regular intervals for monitoring biomass growth by measuring the absorbance (optical density at 600 nm (OD600)) using a spectrophotometer (Beckman Coulter Fullerton, CA, USA). Every sampling operation was done inside the sterilized biological safety cabinet (BH-EN 2005, Faster Srl, Ferrara, Italy).
    E. aerogenes and C. acetobutylicum cells were counted using a Nikon Eclipse 50i microscope (Nikon, Amsterdam, Netherlands) at each liquid/biomass sampling point. The samples for cell count were taken from each individual closed batch run using syringes (Soft-Ject, Henke Sass Wolf, Tuttlingen, Germany) and hypodermic needles (Sterican size 14, B. Braun, Melsungen, Germany). Ten microlitres of sample were applied onto a Neubauer improved cell counting chamber (Superior Marienfeld, Lauda-Königshofen, Germany) with a grid depth of 0.1 mm.
    DNA for qPCR was extracted from 1 mL culture samples by centrifugation at 4 °C and 13,400 r.p.m. for 30 min. The following steps were applied for DNA extraction; (1) cells were resuspended in pre-warmed (65 °C) 1% sodium dodecyl sulfate (SDS) extraction buffer and (2) transferred to Lysing Matrix E tubes (MP Biomedicals, Santa Ana, CA, USA) containing an equal volume of phenol/chloroform/isoamylalcohol (25:24:1). (3) Cell lysis was performed in a FastPrep-24 (MP Biomedicals, NY, USA) device with speed setting 4 for 30 s and the lysate was centrifuged at 13,400 r.p.m. for 10 min. (4) An equal volume of chloroform/isoamylalcohol (24:1) was added to the supernatant of the lysate, followed by centrifugation at 13,400 r.p.m. for 10 min and collection of the aqueous phase. (5) Nucleic acids were precipitated with double volume of polyethylenglycol (PEG) solution (30% PEG, 1.6 mol L−1 NaCl) and 1 μL glycogen (20 mg mL−1) as carrier, incubated for 2 h at room temperature. (6) Following centrifugation at 13,400 r.p.m. for 1 h, nucleic acid pellets were washed with 1 mL cold 70% ethanol, dried at 30 °C using a SpeedVac centrifuge (Thermo Scientific, Dreieich, Germany), eluted in Tris-EDTA buffer and stored at −20 °C until further analysis. Nucleic acid quantification was performed with NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). qPCR assays were developed for quantifying E. aerogenes and C. acetobutylicum in consortium. The primer pairs were designed by targeting species specific genes (Supplementary Table 6) to prevent false-positive amplification and sequences of genes were compared for identifying optimal primer using the ClustalW2 multiple sequence alignment programme (http://www.ebi.ac.uk/Tools/clustalw2/). qPCR assays were performed in Eppendorf Mastercycler epgradientS realplex2 (Eppendorf, Hamburg, Germany). The PCR mixture (20 μL) contained 10 μL SYBR Green labelled Luna Universal qPCR Master Mix (M3003L, New England Biolabs), 0.5 μL of forward and 0.5 μL reverse primer, 8 μL sterile DEPC water and 1 μL of DNA template. Negative controls containing sterile diethyl pyrocarbonate (DEPC) water as a replacement for the DNA templates and DNA template of the non-targeted species were included separately in each run. The amplification protocol started with an initial denaturation at 95 °C for 2 min, followed by 45 cycles of denaturation at 95 °C for 30 s, annealing and fluorescence acquisition at 60 °C for 30 s and elongation at 72 °C for 30 s. A melting-curve analysis (from 60 °C to 95 °C at a transition rate of 1 °C every 10 s) was performed to determine the specificity of the amplification. All amplification reactions were performed in triplicates. A standard curve was generated as described elsewhere29. Culture samples of each organism were collected at different time intervals for cell count and genomic DNA extraction cell density of each strain were determined by cell counting under microscope during growth and subsequent gDNA extraction was applied to reflect absolute quantification. Six tenfold dilution standards were prepared and a linear regression analysis was performed between qPCR reads and cell counts and OD600 measurements.
    Quantification of gas composition
    Gas chromatography (GC) measurements were performed from serum bottles that remained without any manipulation after inoculation until the first time point GC measurement. After every GC measurement, remaining gas was released completely from the serum bottles by penetrating the butyl rubber stopper using a sterile needle. The pressure of serum bottles headspace was determined to examine whether there was any remaining overpressure by using a manometer (digital manometer LEO1-Ei,−1…3 bar, Keller, Germany). The gas compositions were analysed by using a GC (7890 A GC System, Agilent Technologies, Santa Clara, USA) with a 19808 Shin Carbon ST Micropacked Column (Restek GmbH, Bad Homburg, Germany) and provided with a gas injection and control unit (Joint Analytical System GmbH, Moers, Germany) as described before73,74,75. The standard test gas employed in GC comprised the following composition: 0.01 Vol.-% CH4; 0.08 Vol.-% CO2 in N2 (Messer GmbH, Wien, Austria). All chemicals were of highest grade available. H2, CO2, N2, 20 Vol.-% H2 in CO2 and 20 Vol.-% CO2 in N2 were of test gas quality (Air Liquide, Schwechat, Austria).
    Quantification of liquid metabolites
    Quantification of sugars, volatile fatty acids and alcohols were performed with high-performance liquid chromatography (HPLC) system (Agilent 1100), consisting of a G1310A isocratic pump, a G1313A ALS autosampler, a Transgenomic ICSep ICE-ION-300 column, a G1316A column thermostat set at 45 °C and a G1362A RID refractive index detector, measuring at 45 °C (all modules were from Agilent 1100 (Agilent Technologies, CA, USA). The measurement was performed with 0.005 mol L−1 H2SO4 as solvent, with a flow rate of 0.325 mL min−1 and a pressure of 48–49 bar. The injection volume was 40 µL.
    Data analysis
    For the quantitative analysis, the maximum specific growth rate (µmax [h−1]) and mean specific growth rate (µmean [h−1]) were calculated as follows: N = N0·eµt with N, cell number [cells ml−1]; N0, initial cell number [cells ml−1]; t, time [h] and e, Euler’s number. According to the delta cell counts in between sample points, µ was assessed. The Y(H2/S) [mol mol−1], HER [mmol L−1 h−1], CER [mmol L−1 h−1] and the specific H2 production rate (qH2) [mmol g−1 h−1]32 were calculated from the intervals between each time point and the gas composition in the headspace of serum bottle was determined using the GC. The elementary composition of the corresponding biomass59 was used for the calculation of the mean molar weight, carbon balance and the DoR balance. Yields of byproducts were determined after HPLC measurement. Values were normalized according to the zero control. Moreover, the Shannon diversity index (H) was calculated to interpret the changes in microbial diversity, accounting for both richness (S), the number of species present and abundance of different species. Relative abundance of two species was evaluated according to the calculated evenness (EH) values76. Global substrate uptake rate, byproduct production rates and the mass balance analyses of the mono-cultures and consortium on glucose and cellobiose were calculated between the first and last time point.
    Fluorescence in situ hybridization
    For FISH, samples of 2 mL were collected for cell fixation. The samples were centrifuged in micro-centrifuge (5415-R, Eppendorf, Hamburg, Germany) for 10 min at 13,200 r.p.m. and pellets were resuspended in 0.5 mL phosphate-buffered saline (PBS) (10 mmol L−1 of Na2HPO4/NaH2PO, 130 mmol L−1 of NaCl, pH of 7.2–7.4). After repeating this procedure twice, 0.5 mL ice-cold absolute ethanol was added to the 0.5 mL PBS/cell mixture. The ethanol fixed samples were thoroughly mixed and then stored at −20 °C. Poly-l-lysine solution (0.01 % (v/v)) was used for coating the microscope slides (76 × 26 × 1 mm, Marienfeld-Superior, Lauda-Königshofen, Germany) containing ten reaction wells separated by an epoxy layer. After dipping the slide into the solution for 5 min, residual poly-l-lysine from the slides was removed by draining the well, followed by air-drying for several minutes. Cells were immobilized on prepared slides by adding samples (1–10 µL) on each well and air-drying. For cell dehydration, the slides were impregnated with ethanol concentrations of 50% (v/v), 80% (v/v) and 96% (v/v), respectively. The slides were dipped into each solution for 3 min, starting from the lowest concentration.
    The EUB338 probe77 was used to target specific 16S rRNA found in almost all organisms belonging to the domain of bacteria78. The GAM42a probe specifically binds to target regions of gammaproteobacterial 23S rRNA79 (Supplementary Table 7). Both probes were diluted with DEPC water to a certain extent depending on the fluorescence label. Cy3-labelled EUB338 was diluted to a probe concentration of 30 ng DNA μL−1, whereas FLUOS-labelled GAM42a was adjusted to a final concentration of 50 ng DNA μL−1. For hybridization of the probe, 20 µL of hybridization buffer (900 mmol L−1 NaCl, 20 mmol L−1 Tris/HCl, 30% formamide (v/v), 0.01% SDS (v/v)) and 2 µL of diluted probe solution were added into each well. The hybridization reaction (46 °C, overnight) was facilitated using an airtight hybridization chamber (50 mL centrifuge tube) to prevent dehydration.
    A stringent washing step was performed at 48 °C for 10 min in pre-warmed 50 mL washing buffer (100 mmol L−1 NaCl, 20 mmol L−1 Tris/HCl, 5 mmol L−1 EDTA). Afterwards, the slides were dried up and a mounting medium (Antifade Mounting Medium, Vectashield Vector Laboratories, CA, USA) was added to each well. The slides were sealed with a cover glass and examined under phase-contrast microscope (Nikon Eclipse Ni equipped with Lumen 200 Fluorescence Illumination Systems) using filter sets TRITC (557/576) (maximum excitation/emission in nm) for cy3-labelled EUB338 probe and FITC (490/525) for FLUOS-labelled GAM42a probes by a 100 × 1.45 numerical aperture microscope objective (CFI Plan Apo Lambda DM ×100 Oil; Nikon Corp., Japan).
    Statistics and reproducibility
    DoE experiments were designed and analysed using Design Expert version 11.1.2.0 (Stat-Ease, Inc. USA). Analysis of variation was performed at α = 0.05. The p-values for each test are indicated in the ‘Results’ section. All closed batch experiments were reproduced three times (N = 3) and each replication contained quadruplicate (n = 4). qPCR and FISH experiments, which applied all of the mentioned replicates, were performed in technical triplicates (n = 3). DoE experiments were conducted twice (N = 2) and each replication contained triplicate experiments for corner points (n = 3), except the set E (centre points), which was performed in biological pentaplicates (n = 5).
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Netting and pan traps fail to identify the pollinator guild of an agricultural crop

    1.
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).
    Article  Google Scholar 
    2.
    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).
    Article  Google Scholar 

    3.
    Aizen, M., Garibaldi, L. A., Cunningham, S. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).
    CAS  Article  Google Scholar 

    4.
    Aizen, M., Garibaldi, L. A., Cunningham, S. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588 (2009).
    Article  Google Scholar 

    5.
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA. 99, 16812–16816 (2002).
    ADS  CAS  Article  Google Scholar 

    6.
    Klein, A. M., Steffan-Dewenter, I. & Tscharntke, T. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. B Biol. Sci. 270, 955–961 (2003).
    Article  Google Scholar 

    7.
    Hoehn, P., Tscharntke, T., Tylianakis, J. M. & Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proc. R. Soc. B Biol. Sci. 275, 2283–2291 (2008).
    Article  Google Scholar 

    8.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
    ADS  CAS  Article  Google Scholar 

    9.
    Potts, S., Imperatriz-Fonseca, V. & Ngo, H. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2016). https://doi.org/10.5281/zenodo.3402856

    10.
    Leong, J. M. & Thorp, R. W. Colour-coded sampling: the pan trap colour preferences of oligolectic and nonoligolectic bees associated with a vernal pool plant. Ecol. Entomol. 24, 329–335 (1999).
    Article  Google Scholar 

    11.
    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).
    Article  Google Scholar 

    12.
    Wilson, J. S., Griswold, T. & Messinger, O. J. Sampling bee communities (Hymenoptera: Apiformes) in a desert landscape: are pan traps sufficient?. J. Kansas Entomol. Soc. 81, 288–300 (2008).
    Article  Google Scholar 

    13.
    Toler, T. R., Evans, E. W. & Tepedino, V. J. Pan-trapping for bees (Hymenoptera: Apiformes) in Utah’s west desert: The importance of color diversity. Pan-Pac. Entomol. 81, 103–113 (2005).
    Google Scholar 

    14.
    Nielsen, A. et al. Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol. Res. 26, 969–983 (2011).
    Article  Google Scholar 

    15.
    Saunders, M. E. & Luck, G. W. Pan trap catches of pollinator insects vary with habitat. Aust. J. Entomol. 52, 106–113 (2013).
    Article  Google Scholar 

    16.
    Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).
    Article  Google Scholar 

    17.
    Kearns, C., Inouye, D. & Waser, N. Endangered mutualisms: the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).
    Article  Google Scholar 

    18.
    Brunet, J. Pollinator decline: implications for food security and environment. Sci. Glob. https://doi.org/10.33548/scientia371 (2019).
    Article  Google Scholar 

    19.
    Popic, T. J., Davila, Y. C. & Wardle, G. M. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps. PLoS ONE 8, e66665 (2013).
    ADS  CAS  Article  Google Scholar 

    20.
    Bauer, A. A., Clayton, M. K. & Brunet, J. Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. Am. J. Bot. 104, 1–10 (2017).
    Article  Google Scholar 

    21.
    Brunet, J. & Stewart, C. M. Impact of bee species and plant density on alfalfa pollination and potential for gene flow. Psyche A J. Entomol. 2010, 1–7 (2010).
    Article  Google Scholar 

    22.
    Wang, X. et al. Biodiversity of wild alfalfa pollinators and their temporal foraging characters in Hexi Corridor Northwest China. Entomol. Fenn. 23, 4–12 (2012).
    Article  Google Scholar 

    23.
    Chen, M., Zhao, X. Y. & Zuo, X. A. Pollinator activity and pollination success of Medicago sativa L. in a natural and a managed population. Ecol. Evol. 8, 9007–9016 (2018).
    Article  Google Scholar 

    24.
    Cane, J. H. Pollinating bees (Hymenoptera: Apiformes) of U.S. alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 95, 22–27 (2002).
    Article  Google Scholar 

    25.
    Bohart, G. E. Alfalfa pollinators with special reference to species other than honey bees. In Proceedings of the 10th International Congress of Entomology, Vol. 4, pp. 929–937 (1958).

    26.
    Brookes, B., Small, E., Lefkovitch, L. P., Damman, H. & Fairey, D. T. Attractiveness of alfalfa (Medicago sativa L.) to wild pollinators in relation to wildflowers. Can. J. Plant Sci. 74, 779–783 (1994).
    Article  Google Scholar 

    27.
    Bohart, G. E. Pollination of alfalfa and red clover. Annu. Rev. Entomol. 2, 355–380 (1957).
    Article  Google Scholar 

    28.
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Article  Google Scholar 

    29.
    Hall, H. G. Color preferences of bees captured in pan traps. J. Kansas Entomol. Soc. 89, 273–276 (2016).
    Article  Google Scholar 

    30.
    Campbell, J. W. & Hanula, J. L. Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 11, 399–408 (2007).
    Article  Google Scholar 

    31.
    Heneberg, P. & Bogusch, P. To enrich or not to enrich? Are there any benefits of using multiple colors of pan traps when sampling aculeate Hymenoptera?. J. Insect Conserv. 18, 1123–1136 (2014).
    Article  Google Scholar 

    32.
    Moreira, E. F. et al. Are pan traps colors complementary to sample community of potential pollinator insects?. J. Insect Conserv. 20, 583–596 (2016).
    Article  Google Scholar 

    33.
    Burd, M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot. Rev. 60, 83–139 (1994).
    MathSciNet  Article  Google Scholar 

    34.
    Herrera, C. M. Pollinator abundance, morphology, and flower visitation rate: analysis of the ‘quantity’ component in a plant-pollinator system. Oecologia 80, 241–248 (1989).
    ADS  Article  Google Scholar 

    35.
    Riday, H., Reisen, P., Raasch, J. A., Santa-Martinez, E. & Brunet, J. Selfing rate in an alfalfa seed production field pollinated with leafcutter bees. Crop Sci. 55, 1087–1095 (2015).
    Article  Google Scholar 

    36.
    McGregor, S. Insect Pollination of Cultivated Crop Plants. (USDA, 1976). https://doi.org/10.1093/besa/23.1.104

    37.
    Grundel, R., Frohnapple, K. J., Jean, R. P. & Pavlovic, N. B. Effectiveness of bowl trapping and netting for inventory of a bee community. Environ. Entomol. 40, 374–380 (2011).
    Article  Google Scholar 

    38.
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.5–5. https://CRAN.R-project.org/package=vegan (2019).

    39.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).

    40.
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
    Article  Google Scholar 

    41.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Article  Google Scholar 

    42.
    Signorell, A. & Al, E. DescTools: tools for descriptive statistics. R package version 0.99.28. (2019). More