in

Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change

[adace-ad id="91168"]
  • 1.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Google Scholar 

  • 2.

    Grooten, M. & Almond, R. E. A. (eds) Living Planet Report ‒ 2018: Aiming Higher (WWF, 2018).

  • 3.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    CAS  PubMed  Google Scholar 

  • 5.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    CAS  PubMed  Google Scholar 

  • 6.

    Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).

    Google Scholar 

  • 7.

    Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).

    PubMed  Google Scholar 

  • 8.

    Ferrier, S. et al. (eds) The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2016).

  • 9.

    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).

    Google Scholar 

  • 10.

    Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).

    Google Scholar 

  • 11.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).

    Google Scholar 

  • 13.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Google Scholar 

  • 14.

    Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    CAS  PubMed  Google Scholar 

  • 16.

    Alkemade, R. et al. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12, 374–390 (2009).

    Google Scholar 

  • 17.

    Martins, I. S. & Pereira, H. M. Improving extinction projections across scales and habitats using the countryside species-area relationship. Sci. Rep. 7, 12899 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    CAS  PubMed  Google Scholar 

  • 20.

    Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Google Scholar 

  • 21.

    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).

    CAS  PubMed  Google Scholar 

  • 22.

    Stevens, G. C. The latitudinal gradient in geographic range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Google Scholar 

  • 23.

    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).

    Google Scholar 

  • 24.

    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).

    CAS  PubMed  Google Scholar 

  • 25.

    Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. Lond. B Biol. Sci. 280, 20122131 (2013).

    Google Scholar 

  • 26.

    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).

    Google Scholar 

  • 27.

    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).

    Google Scholar 

  • 28.

    Wiersma, P., Munoz-Garcia, A., Walker, A. & Williams, J. B. Tropical birds have a slow pace of life. Proc. Natl Acad. Sci. USA 104, 9340–9345 (2007).

    CAS  PubMed  Google Scholar 

  • 29.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    CAS  PubMed  Google Scholar 

  • 30.

    Orme, C. D. L. et al. Distance to range edge determines sensitivity to deforestation. Nat. Ecol. Evol. 3, 886–891 (2019).

    PubMed  Google Scholar 

  • 31.

    Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).

    Google Scholar 

  • 32.

    Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).

    PubMed  Google Scholar 

  • 33.

    Williams, J. J. & Newbold, T. Local climatic changes affect biodiversity responses to land use: a review. Divers. Distrib. 26, 76–92 (2020).

    Google Scholar 

  • 34.

    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    PubMed  Google Scholar 

  • 35.

    Williams, J. J., Bates, A. E. & Newbold, T. Human‐dominated land uses favour species affiliated with more extreme climates, especially in the tropics. Ecography 43, 391–405 (2020).

    Google Scholar 

  • 36.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Google Scholar 

  • 37.

    Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land‐use change. Ecography 42, 2084–2094 (2019).

    Google Scholar 

  • 38.

    Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).

    Google Scholar 

  • 39.

    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).

    Google Scholar 

  • 40.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    Google Scholar 

  • 41.

    Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Google Scholar 

  • 42.

    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A. Pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Google Scholar 

  • 44.

    Fu, B., Wang, J., Chen, L. & Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 54, 197–213 (2003).

    Google Scholar 

  • 45.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Google Scholar 

  • 46.

    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    CAS  PubMed  Google Scholar 

  • 47.

    García-Vega, D. & Newbold, T. Assessing the effects of land use on biodiversity in the world’s drylands and Mediterranean environments. Biodivers. Conserv. 29, 393–408 (2020).

    Google Scholar 

  • 48.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    CAS  PubMed  Google Scholar 

  • 49.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  PubMed  Google Scholar 

  • 50.

    Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Google Scholar 

  • 52.

    Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. L. & Purvis, A. Reply to ‘The biodiversity intactness index may underestimate losses’. Nat. Ecol. Evol. 3, 864–865 (2019).

    PubMed  Google Scholar 

  • 53.

    Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744 (2017).

    CAS  PubMed  Google Scholar 

  • 54.

    The IUCN Red List of Threatened Species Version 2013.7 (IUCN, 2013); http://www.iucnredlist.org/

  • 55.

    Bird Species Distribution Maps of the World Version 2.0 (BirdLife International & NatureServe, 2012); http://www.birdlife.org/datazone/info/spcdownload

  • 56.

    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Zero Draft of the Post-2020 Global Biodiversity Framework Resolution CBD/WG2020/2/3 (Convention on Biological Diversity, 2020).

  • 58.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    CAS  PubMed  Google Scholar 

  • 59.

    Kissling, W. D., Sekercioglu, C. H. & Jetz, W. Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob. Ecol. Biogeogr. 21, 328–340 (2012).

    Google Scholar 

  • 60.

    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).

    PubMed  Google Scholar 

  • 61.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Terrestrial Ecoregions of the World (The Nature Conservancy, 2009); http://maps.tnc.org/gis_data.html

  • 63.

    Hudson, L. N. et al. Dataset: The 2016 Release of the PREDICTS Database (Natural History Museum Data Portal, 2016); https://doi.org/10.5519/0066354

  • 64.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Google Scholar 

  • 65.

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2008).

    Google Scholar 

  • 66.

    Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).

    Google Scholar 

  • 67.

    Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).

    Google Scholar 

  • 68.

    Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Google Scholar 

  • 69.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 70.

    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).

    Google Scholar 

  • 71.

    Bivand, R. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields