More stories

  • in

    Phenological shifts of abiotic events, producers and consumers across a continent

    Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Tomas Roslin

    University of Helsinki, Helsinki, Finland
    Tomas Roslin, Laura Antão, Maria Hällfors, Coong Lo, Juri Kurhinen & Otso Ovaskainen

    EarthCape OY, Helsinki, Finland
    Evgeniy Meyke

    Department of Computer Science, Aalto University, Espoo, Finland
    Gleb Tikhonov

    Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, Mieres, Spain
    Maria del Mar Delgado

    3237 Biology-Psychology Building, University of Maryland, College Park, MD, USA
    Eliezer Gurarie

    National Park Orlovskoe Polesie, Oryol, Russian Federation
    Marina Abadonova

    Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
    Ozodbek Abduraimov, Azizbek Mahmudov & Mirabdulla Turgunov

    Kostomuksha Nature Reserve, Kostomuksha, Russian Federation
    Olga Adrianova, Irina Gaydysh & Natalia Sikkila

    Altai State Nature Biosphere Reserve, Gorno-Altaysk, Russian Federation
    Tatiana Akimova, Svetlana Chuhontseva, Elena Gorbunova, Yury Kalinkin, Helen Korolyova, Oleg Mitrofanov, Miroslava Sahnevich, Vladimir Yakovlev & Tatyana Zubina

    Kabardino-Balkarski Nature Reserve, Kashkhatau, Russian Federation
    Muzhigit Akkiev

    FSE Zapovednoe Podlemorye, Ust-Bargizin, Russian Federation
    Aleksandr Ananin, Evgeniya Bukharova & Natalia Luzhkova

    Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, Russian Federation
    Aleksandr Ananin

    State Nature Reserve Stolby, Krasnoyarsk, Russian Federation
    Elena Andreeva, Nadezhda Goncharova, Alexander Hritankov, Anastasia Knorre, Vladimir Kozsheechkin & Vladislav Timoshkin

    Carpathian Biosphere Reserve, Rakhiv, Ukraine
    Natalia Andriychuk, Alla Kozurak & Anatoliy Vekliuk

    Nizhne-Svirsky State Nature Reserve, Lodeinoe Pole, Russian Federation
    Maxim Antipin

    State Nature Reserve Prisursky, Cheboksary, Russian Federation
    Konstantin Arzamascev

    Zapovednoe Pribajkalje (Bajkalo-Lensky State Nature Reserve, Pribajkalsky National Park), Irkutsk, Russian Federation
    Svetlana Babina

    Darwin Nature Biosphere Reserve, Borok, Russian Federation
    Miroslav Babushkin, Andrey Kuznetsov, Natalia Nemtseva, Irina Rybnikova & Nicolay Zelenetskiy

    Volzhsko-Kamsky National Nature Biosphere Rezerve, Sadovy, Russian Federation
    Oleg Bakin, Elena Chakhireva & Alexey Pavlov

    FGBU National Park Shushenskiy Bor, Shushenskoe, Russian Federation
    Anna Barabancova & Andrej Tolmachev

    Voronezhsky Nature Biosphere Reserve, Voronezh, Russian Federation
    Inna Basilskaja & Inna Sapelnikova

    Baikalsky State Nature Biosphere Reserve, Tankhoy, Russian Federation
    Nina Belova, Olga Ermakova, Irina Kozyr, Aleksandra Krasnopevtseva & Nikolay Volodchenkov

    Visimsky Nature Biosphere Reserve, Kirovgrad, Russian Federation
    Natalia Belyaeva & Rustam Sibgatullin

    Kondinskie Lakes National Park named after L. F. Stashkevich, Sovietsky, Russian Federation
    Tatjana Bespalova, Alena Butunina, Aleksandra Esengeldenova, Natalia Korotkikh & Evgeniy Larin

    FSBI United Administration of the Kedrovaya Pad’ State Biosphere Nature Reserve and Leopard’s Land National Park, Vladivostok, Russian Federation
    Evgeniya Bisikalova

    Pechoro-Ilych State Nature Reserve, Yaksha, Russian Federation
    Anatoly Bobretsov, Murad Kurbanbagamaev, Irina Megalinskaja, Viktor Teplov, Valentina Teplova & Tatiana Tertitsa

    A. N. Severtsov Institute of Ecology and Evolution, Moscow, Russian Federation
    Vladimir Bobrov & Igor Pospelov

    Komsomolskiy Department, FGBU Zapovednoye Priamurye, Komsomolsk-on-Amur, Russian Federation
    Vadim Bobrovskyi, Olga Kuberskaya, Polina Van & Vladimir Van

    Tigirek State Nature Reserve, Barnaul, Russian Federation
    Elena Bochkareva & Evgeniy A. Davydov

    Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
    Elena Bochkareva

    State Nature Reserve Bolshaya Kokshaga, Yoshkar-Ola, Russian Federation
    Gennady Bogdanov

    Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russian Federation
    Vladimir Bolshakov

    Sikhote-Alin State Nature Biosphere Reserve named after K. G. Abramov, Terney, Russian Federation
    Svetlana Bondarchuk, Sergey Elsukov, Ludmila Gromyko, Irina Nesterova & Elena Smirnova

    FSBI Prioksko-Terrasniy State Reserve, Danky, Russian Federation
    Yuri Buyvolov & Galina Sokolova

    Lomonosov Moscow State University, Moscow, Russian Federation
    Anna Buyvolova & Ilya Prokhorov

    National Park Meshchera, Gus-Hrustalnyi, Russian Federation
    Yuri Bykov, Zoya Drozdova & Svetlana Mayorova

    South Urals Federal Research Center of Mineralogy and Geoecology, Ilmeny State Reserve, Ural Branch, Russian Academy of Sciences, Miass, Russian Federation
    Olga Chashchina, Nadezhda Kuyantseva & Valery Zakharov

    FGBU National Park Kenozersky, Arkhangelsk, Russian Federation
    Nadezhda Cherenkova, Svetlana Drovnina & Alexander Samoylov

    FGBU GPZ Kologrivskij les im. M.G. Sinicina, Kologriv, Russian Federation
    Sergej Chistjakov

    Altai State University, Barnaul, Russian Federation
    Evgeniy A. Davydov

    Pryazovskyi National Nature Park, Melitopol’, Ukraine
    Viktor Demchenko, Elena Diadicheva & Valeri Sanko

    State Nature Reserve Privolzhskaya Lesostep, Penza, Russian Federation
    Aleksandr Dobrolyubov & Aleksey Kudryavtsev

    Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russian Federation
    Ludmila Dostoyevskaya, Violetta Fedotova & Pavel Lebedev

    Sary-Chelek State Nature Reserve, Aksu, Kyrgyzstan
    Akynaly Dubanaev

    Institute for Evolutionary Ecology NAS Ukraine, Kiev, Ukraine
    Yuriy Dubrovsky

    FGBU State Nature Reserve Kuznetsk Alatau, Mezhdurechensk, Russian Federation
    Lidia Epova

    Kerzhenskiy State Nature Biosphere Reserve, Nizhny Novgorod, Russian Federation
    Olga S. Ermakova

    FSBI United Administration of the Mordovia State Nature Reserve and National Park Smolny, Republic of Mordovia, Saransk, Russian Federation
    Elena Ershkova

    Ogarev Mordovia State University, Saransk, Russian Federation
    Elena Ershkova

    Bryansk Forest Nature Reserve, Nerussa, Russian Federation
    Oleg Evstigneev, Evgeniya Kaygorodova, Sergey Kossenko, Sergey Kruglikov & Elena Sitnikova

    Pinezhsky State Nature Reserve, Pinega, Russian Federation
    Irina Fedchenko, Lyudmila Puchnina, Svetlana Rykova & Andrei Sivkov

    The Central Chernozem State Biosphere Nature Reserve named after Professor V.V. Alyokhin, Kurskiy, Russian Federation
    Tatiana Filatova

    Tyumen State University, Tyumen, Russian Federation
    Sergey Gashev

    Reserves of Taimyr, Norilsk, Russian Federation
    Anatoliy Gavrilov, Leonid Kolpashikov, Elena Pospelova & Violetta Strekalovskaya

    Chatkalski National Park, Toshkent, Uzbekistan
    Dmitrij Golovcov

    National Park Ugra, Kaluga, Russian Federation
    Tatyana Gordeeva & Viktorija Teleganova

    Kaniv Nature Reserve, Kaniv, Ukraine
    Vitaly Grishchenko, Yuliia Kulsha, Vasyl Shevchyk & Eugenia Yablonovska-Grishchenko

    Smolenskoe Poozerje National Park, Przhevalskoe, Russian Federation
    Vladimir Hohryakov, Gennadiy Kosenkov & Ksenia Shalaeva

    FSBI Zeya State Nature Reserve, Zeya, Russian Federation
    Elena Ignatenko, Klara Pavlova & Sergei Podolski

    Polistovsky State Nature Reserve, Pskov, Russian Federation
    Svetlana Igosheva & Tatiana Novikova

    Ural State Pedagogical University, Yekaterinburg, Russian Federation
    Uliya Ivanova, Margarita Kupriyanova, Tamara Nezdoliy, Nataliya Skok & Oksana Yantser

    Institute of Mathematical Problems of Biology RAS—the Branch of the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russian Federation
    Natalya Ivanova & Maksim Shashkov

    Kronotsky Federal Nature Biosphere Reserve, Yelizovo, Russian Federation
    Fedor Kazansky & Darya Panicheva

    Zhiguli Nature Reserve, P. Bakhilova Polyana, Russian Federation
    Darya Kiseleva

    Institute for Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
    Anastasia Knorre

    Central Forest State Nature Biosphere Reserve, Tver, Russian Federation
    Evgenii Korobov, Elena Shujskaja, Sergei Stepanov & Anatolii Zheltukhin

    National Park Bashkirija, Nurgush, Russian Federation
    Elvira Kotlugalyamova & Lilija Sultangareeva

    State Nature Reserve Kurilsky, Juzhno-Kurilsk, Russian Federation
    Evgeny Kozlovsky

    Vodlozersky National Park, Karelia, Petrozavodsk, Russian Federation
    Elena Kulebyakina & Viktor Mamontov

    State Nature Reserve Kivach, Kondopoga, Russian Federation
    Anatoliy Kutenkov, Nadezhda Kutenkova, Anatoliy Shcherbakov, Svetlana Skorokhodova, Alexander Sukhov & Marina Yakovleva

    South-Ural Federal University, Miass, Russian Federation
    Nadezhda Kuyantseva

    Saint-Petersburg State Forest Technical University, St. Petersburg, Russian Federation
    Pavel Lebedev

    Astrakhan Biosphere Reserve, Astrakhan, Russian Federation
    Kirill Litvinov

    FSBI United Administration of the Lazovsky State Reserve and National Park Zov Tigra, Lazo, Russian Federation
    Lidiya Makovkina, Aleksandr Myslenkov & Inna Voloshina

    State Nature Reserve Tungusskiy, Krasnoyarsk, Russian Federation
    Artur Meydus, Julia Raiskaya & Vladimir Sopin

    Krasnoyarsk State Pedagogical University named after V.P. Astafyev, Krasnoyarsk, Russian Federation
    Artur Meydus

    Institute of Geography, Russian Academy of Sciences, Moscow, Russian Federation
    Aleksandr Minin

    Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russian Federation
    Aleksandr Minin

    Carpathian National Nature Park, Yaremche, Ukraine
    Mykhailo Motruk

    State Environmental Institution National Park Braslav lakes, Braslav, Belarus
    Nina Nasonova

    National Park Synevyr, Synevyr-Ostriki, Ukraine
    Tatyana Niroda, Ivan Putrashyk, Yurij Tyukh & Yurij Yarema

    Pasvik State Nature Reserve, Nikel, Russian Federation
    Natalja Polikarpova

    Mari Chodra National Park, Krasnogorsky, Russian Federation
    Tatiana Polyanskaya

    State Nature Reserve Vishersky, Krasnovishersk, Russian Federation
    Irina Prokosheva

    State Nature Reserve Olekminsky, Olekminsk, Russian Federation
    Yuri Rozhkov, Olga Rozhkova & Dmitry Tirski

    Crimea Nature Reserve, Alushta, Republic of Crimea
    Marina Rudenko

    Forest Research Institute Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russian Federation
    Sergei Sazonov, Lidia Vetchinnikova & Juri Kurhinen

    Black Sea Biosphere Reserve, Hola Prystan’, Ukraine
    Zoya Selyunina

    Institute of Physicochemical and Biological Problems in Soil Sciences, Russian Academy of Sciences, Pushchino, Russian Federation
    Maksim Shashkov

    State Nature Reserve Nurgush, Kirov, Russian Federation
    Sergej Shubin & Ludmila Tselishcheva

    Caucasian State Biosphere Reserve of the Ministry of Natural Resources, Maykop, Russian Federation
    Yurii Spasovski

    National Nature Park Vyzhnytskiy, Berehomet, Ukraine
    Vitalіy Stratiy

    National Park Khvalynsky, Khvalynsk, Russian Federation
    Guzalya Suleymanova

    State Research Center Arctic and Antarctic Research Institute, Saint Petersburg, Russian Federation
    Aleksey Tomilin

    Information-Analytical Centre for Protected Areas, Moscow, Russian Federation
    Aleksey Tomilin

    State Nature Reserve Malaya Sosva, Sovetskiy, Russian Federation
    Aleksander Vasin & Aleksandra Vasina

    Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky, Krasnoyarsk, Russian Federation
    Vladislav Vinogradov

    Surhanskiy State Nature Reserve, Sherabad, Uzbekistan
    Tura Xoliqov

    Mordovia State Nature Reserve, Pushta, Russian Federation
    Andrey Zahvatov

    Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
    Otso Ovaskainen

    The data were collected by the 195 authors starting from M.A. and ending with T.Z. in the author list. J.K., E.M., C.L., G.T. and E.G. contributed to the establishment and coordination of the collaborative network and to the compilation and curation of the resulting dataset. T.R., O.O., L.A., M.H. and M.d.M.D. conceived the idea behind the current study and wrote the first draft of the paper, with O.O. conducting the analyses. All authors provided useful comments on earlier drafts. More

  • in

    Geometric morphometric investigation of craniofacial morphological change in domesticated silver foxes

    Samples
    We sampled 73 adult fox skulls (Vulpes vulpes) from three separate sample groups: wild (8 F, 12 M), unselected (15 F, 8 M), and domesticated (15 F, 15 M). Domesticated and unselected skulls from the RFF experiment were generously provided by Dr. Trut and transported to Harvard in 2004. Unfortunately, we do not know how these foxes were chosen, but have no reason not to assume that they were selected randomly from both populations. Wild fox skulls in the study were sampled from the collections of the Museum of Comparative Zoology, Harvard University. All but two wild foxes were trapped in Canada east of Quebec between 1894 and 1952, with the majority (70%) between 1894 and 1900 (Table S1). We excluded from the study sample all juvenile skulls, as determined through lower third molar eruption and fusion of the cranial suture between the basioccipital and basisphenoid16, and those skulls that had evidence of damage or disease. After applying these exclusion criteria, we arrived at our final sample of 73 skulls.
    3D landmarks
    To prevent movement during measurement, each skull was embedded in styrofoam and secured to the workspace desk before 3D coordinates of 29 landmarks, listed, defined and displayed in Table S2 and Fig S1, were collected on the left half of each skull by a single analyst (TMK). Of these 29 landmarks, 17% are on the cranial base, 27% are on the neurocranium, and 55% are on the face. 3D landmark coordinates were measured with a Microscribe G2 (Positional Accuracy ± 0.38 mm, Revware, Inc.). This machine consists of a mobile robotic arm tipped with a probe. After calibration, the probe tip is placed on each landmark to record its XYZ coordinates. To avoid having to move the skulls during measuring and to limit the number of variables in our final GM analysis (too high a number may be a problem given our small sample size), we restricted landmark measurements to one half of each skull. We assume that the fluctuating asymmetry between each fox population is negligible and stable as has previously been shown in comparisons across a domestic-wild hybridization zone in mice17. In most cases, landmark positions were lightly marked with pencil to ensure proper probe placement.
    Linear and endocranial volume measurements
    Six linear measurements were taken on each skull using digital calipers (Fowler High Precision, Positional Accuracy ± 0.03 mm): total skull length, snout length, cranial vault height, cranial vault width, bi-zygomatic width and upper jaw width (Fig. 1). Endocranial volume was measured using plastic beads. Each cranium was filled up to the level of the foramen magnum and repeatedly shaken and tamped down until no more beads could be added. The beads were then funneled into a graduated cylinder to obtain a volumetric measurement.
    Figure 1

    Schematic diagram of the six linear measurements taken on the fox skulls. 1: Bi-zygomatic width. 2: Cranial vault width. 3: Upper jaw width. 4: Total skull length. 5: Snout length. 6: Cranial vault height.

    Full size image

    Geometric morphometrics
    Generalized Procrustes analysis was conducted in R v. 4.0.218 using the geomorph v. 3.3.1 package19. Landmark configurations from each specimen were translated to the origin, rescaled to centroid size, and optimally rotated (using a least-squares criterion) until the coordinates of homologous landmarks aligned as closely as possible. These steps place all specimens in the same shape space, centered on the mean shape. An orthogonal projection into a linear tangent space was applied so statistical analyses could be performed on the resulting tangent space coordinates. For Procrustes superimposition, we used the default parameters of the gpagen function in geomorph.
    Repeatability analyses
    Landmark measurement repeatability was evaluated through repeated measurements of three fox skulls (domesticated male ID# TM23, domesticated female ID# TF476, unselected female ID# UF1058) on ten separate occasions. In this case, repeatability encompasses both Microscribe and operator error. Generalized Procrustes Analysis (GPA) was used on these landmark coordinates to ensure that they were in the same 3D location relative to one another. The average Procrustes distance (PD) between all ten iterations of the same specimen was then compared to the average Procrustes distance within the population-sex grouping to which the skull belonged. To do this, we calculated a sensitivity ratio based on the formula: (Mean Inter-specimen PD – Mean Intra-specimen PD)/Mean Intra-specimen PD. This created a sensitivity ratio that reflects how sensitive the Microscribe measurements are with respect to the average difference among foxes of the same population-sex category. Averaging the sensitivity ratios for our three skulls, we find that the difference between replicates is roughly 3.7 times smaller than the differences within population-sex groupings. This indicates that the Microscribe G2 is robust enough to detect subtle individual differences in measured landmark coordinates. Linear and endocranial measurement repeatability was quantified through a similar method where repeat measurements were taken on 3 domesticated female fox skulls on 15 separate occasions. Sensitivity ratios were deteremined for each measurement (i.e. total skull length, snout length etc.) by calculating the standard deviation of each repeated measurement on a single specimen, averaging the three specimens’ standard deviations for that measurement, and then comparing that value to the population (domesticated female) standard deviation for that measurement. With the exception of cranial vault height (see limitations), the replicate standard deviations of each measurement were roughly a third (or less) of the population standard deviations (Table S3).
    Statistical analyses
    All statistical analyses were performed in R18. For all parametric inferences, we report point and interval (95% confidence) estimates of effect sizes, while for permutation-based inferences we report point estimates and p-values. All p-values involving multiple comparisons were adjusted for family-wise error using the sequential Bonferroni method.
    3D shape comparisons
    To test hypotheses about shape differences among the three populations of foxes, we used a permutation-based Procrustes MANOVA to regress tangent space coordinates on population identity and sex in the geomorph v. 3.3.1 package. Because we are unable to detect significant differences in allometry among populations with a permutation-based Procrustes MANOVA of tangent space coordinates on the interaction term of population identity and centroid size, the tangent space coordinates were not corrected for any scaling effects (see Supplemental information and Fig S2). Given this result, we control only for isometric size in geometric morphometric analyses (i.e. no correction for scaling in tangent space coordinates) as well as in our linear measurements. To determine how skull shape differed between fox populations, we performed pairwise comparisons of shape using Procrustes distances. We additionally performed pairwise comparisons between groups of the shape variance within a group (as assessed by the dispersion of residuals around the mean shape for a given population)20. All pairwise comparisons were made using the RRPP v. 0.6.1 package21,22. Permutation-based p-values for the pairwise comparisons were corrected for family-wise error using the sequential Bonferroni method. To visualize changes in skull shape between populations, a principal components analysis (PCA) was performed on the tangent space coordinates. Skull warp changes along the first principal component were graphed to visualize shape changes along this axis. Size differences between populations were assessed via a linear model using a weighted least squares (WLS) estimator, where centroid size was regressed on population identity and sex. The WLS estimator allowed for separate residual variances for each combination of population and sex, so that heteroskedasticity across these groups could be accounted for in the model. Variance in centroid size was assessed with a Levene’s test based on absolute deviations from the median and was performed using the car package v. 3.0-1023.
    Linear and endocranial volume comparisons
    Prior to modeling linear and volumetric data, we created size-adjusted versions of our variables to account for a difference in isometric size between wild and RFF populations. Normalizing to size allows us to parse out the effects of size selection from those of selection for docility as they likely have overlapping effects on craniofacial shape. We adjusted for size by normalizing each linear measurement and the cube root of endocranial volume by centroid size. We used centroid size rather than the geometric mean of the six linear measurements because centroid size was calculated using a larger sample of craniometric landmarks and is therefore the better proxy of overall cranial size. We performed size corrections on the raw measurements instead of including a size variable in the models because it allows the size-correction to be intrinsic to each fox rather than depending on the size of every fox in the model.
    To determine if there were population-level differences in size-corrected linear and volumetric variables, we used a linear model with a generalized least squares (GLS) estimator from the nlme v. 3.1-150 package24 to regress all 7 skull variables simultaneously as correlated responses on population identity and sex (see Supplementary Methods for details of estimation strategy and model specification and Figs. S3, S4). We report estimates of pairwise percent differences between population means for each skull variable. We use this method because the 7 linear and volumetric skull variables were correlated in two ways (see Fig. S3). First, they were measured on the same specimens, and second, they represent non-independent aspects of shape variation. Modeling these response variables in 7 separate general linear models (e.g., ANOVA) would result in biologically unrealistic inferences because these correlations would be artificially fixed at zero. In addition, since skull variables exhibited varying amounts of dispersion, the GLS model allowed for different residual variances for each response variable.
    Sexual dimorphism comparisons
    Sexual dimorphism within a species is often represented as dimorphism in size as well as shape25. Therefore, in contrast to the previous analyses, we assess the degree of sexual dimorphism in both size and shape. We used a similar GLS model to determine the degree of sexual dimorphism of the raw (non-size corrected) variables within each population. To estimate sex-specific effects, we added an additional interaction term between sex and population identity in this model. We report the degree of dimorphism using estimates of mean differences between males and females for a given skull variable, within a population. For both models using linear and volumetric data, we performed model selection for variance components and correlation structures using the Bayesian information criterion, since this has been shown to provide a good balance between parsimony and over-fitting for explanatory models26. Linear model (GLS) assumptions were checked using diagnostic plots of standardized residuals and fitted values (see Fig. S5). More

  • in

    Cryptic terrestrial fungus-like fossils of the early Ediacaran Period

    1.
    Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. B 367, 519–536 (2012).
    Article  Google Scholar 
    2.
    Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol. Rev. 94, 1443–1476 (2019).
    PubMed  Article  Google Scholar 

    4.
    Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).
    CAS  PubMed  Article  Google Scholar 

    5.
    Lutzoni, F. et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9, 5451 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Chang, Y. et al. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol. Evol. 7, 1590–1601 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Taylor, T. N., Krings, M. & Taylor, E. L. Fossil Fungi. 1st edn (Academic Press, 2015).

    8.
    Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat. Rev. Microbiol. 18, 717–730 (2020).
    Google Scholar 

    9.
    Bengtson, S. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat. Ecol. Evol. 1, 0141 (2017).
    Article  Google Scholar 

    10.
    Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Bonneville, S. et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci. Adv. 6, eaax7599 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Butterfield, N. J. Probable Proterozoic fungi. Paleobiology 31, 165–182 (2005).
    Article  Google Scholar 

    13.
    Yuan, X., Xiao, S. & Taylor, T. N. Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Smith, M. R. Cord-forming Palaeozoic fungi in terrestrial assemblages. Bot. J. Linn. Soc. 180, 452–460 (2016).
    Article  Google Scholar 

    15.
    Krings, M., Harper, C. J. & Taylor, E. L. Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philos. Trans. R. Soc. B 373, 20160500 (2018).
    Article  Google Scholar 

    16.
    Condon, D. et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Zhou, C., Huyskens, M. H., Lang, X., Xiao, S. & Yin, Q.-Z. Calibrating the terminations of Cryogenian global glaciations. Geology 47, 251–254 (2019).
    ADS  CAS  Article  Google Scholar 

    18.
    Jiang, G., Kennedy, M. J., Christie-Blick, N., Wu, H. & Zhang, S. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. J. Sediment. Res. 76, 978–995 (2006).
    ADS  CAS  Article  Google Scholar 

    19.
    Hoffman, P. F. & Macdonald, F. A. Sheet-crack cements and early regression in Marinoan (635 Ma) cap dolostones: regional benchmarks of vanishing ice-sheets? Earth Planet. Sci. Lett. 300, 374–384 (2010).
    ADS  CAS  Article  Google Scholar 

    20.
    Gan, T. et al. Miniature paleo-speleothems from the earliest Ediacaran (635 Ma) Doushantuo cap dolostone in South China and their implications for terrestrial ecosystems. EarthArXiv, https://doi.org/10.31223/osf.io/srkcp (2019).

    21.
    Zhou, C., Bao, H., Peng, Y. & Yuan, X. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology 38, 903–906 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Zhou, G., Luo, T., Zhou, M., Xing, L. & Gan, T. A ubiquitous hydrothermal episode recorded in the sheet-crack cements of a Marinoan cap dolostone of South China: implication for the origin of the extremely 13C-depleted calcite cement. J. Asian Earth Sci. 134, 63–71 (2017).
    ADS  Article  Google Scholar 

    23.
    Muscente, A. D., Czaja, A. D., Tuggle, J., Winkler, C. & Xiao, S. Manganese oxides resembling microbial fabrics and their implications for recognizing inorganically preserved microfossils. Astrobiology 18, 249–258 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    García-Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194 (2003).
    ADS  PubMed  Article  CAS  Google Scholar 

    25.
    Rouillard, J., García-Ruiz, J. M., Gong, J. & van Zuilen, M. A. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record. Geobiology 16, 279–296 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Hofmann, B. A., Farmer, J. D., Blanckenburg, F. V. & Fallick, A. E. Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology 8, 87–117 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Schopf, J. W. et al. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis. Proc. Natl Acad. Sci. USA 112, 2087–2092 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Teske, A. & Nelson, D. C. in The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass (eds Dworkin, M. et al.) 784–810 (Springer, 2006).

    30.
    Zhou, X. et al. Biogenic iron-rich filaments in the quartz veins in the uppermost Ediacaran Qigebulake Formation, Aksu area, northwestern Tarim Basin, China: implications for iron oxidizers in subseafloor hydrothermal systems. Astrobiology 15, 523–537 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Thurston, E. L. & Ingram, L. O. Morphology and fine structure of Fischerella ambigua. J. Phycol. 7, 203–210 (1971).
    Google Scholar 

    32.
    Iyengar, M. O. P. & Desikachary, T. V. Mastigocladopsis jogensis gen. et sp. nov., a new member of the stigonemataceæ. Proc. Ind. Acad. Sci. B 24, 55–59 (1946).
    Google Scholar 

    33.
    Komárek, J. Cyanoprokaryota: 3. Teil/Part 3: Heterocytous Genera. (Springer Spektrum, 2013).

    34.
    Castenholz, R. W. in Bergey’s Manual of Systematic Bacteriology (eds Boone, et al.) 473–599 (Springer, 2001).

    35.
    Bartley, J. K. Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11, 571–586 (1996).
    ADS  Article  Google Scholar 

    36.
    Bold, H. C. & Wynne, M. J. Introduction to the Algae: Structure and Reproduction. (Prentice-Hall, 1978).

    37.
    Butterfield, N. J. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30, 231–252 (2004).
    Article  Google Scholar 

    38.
    Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).
    PubMed  Article  Google Scholar 

    39.
    Leliaert, F. & Coppejans, E. A revision of Cladophoropsis Børgesen (Siphonocladales, Chlorophyta). Phycologia 45, 657–679 (2006).
    Article  Google Scholar 

    40.
    Zhao, Z.-J., Zhu, H., Hu, Z.-Y. & Liu, G.-X. Occurrence of true branches in Rhizoclonium (Cladophorales, Ulvophyceae) and the reinstatement of Rhizoclonium pachydermum Kjellman. Phytotaxa 166, 273–284 (2014).
    Article  Google Scholar 

    41.
    Entwisle, T. J. A monograph of Vaucheria (Vaucheriaceae, Chrysophyta) in south-eastern mainland Australia. Aust. Syst. Bot. 1, 1–77 (1988).
    Article  Google Scholar 

    42.
    Boo, S. M. & Cho, T. O. The Morphology of Griffithsia tomo-yamadae Okamura (Ceramiaceae, Rhodophyta): a little-known species from the northeast Pacific. Bot. Mar. 44, 109–118 (2001).
    Article  Google Scholar 

    43.
    Ferrer, N. C. & Caceres, E. J. Spirogyra salmonispora sp. nov. (Zygnematophyceae, Chiorophyta), a new freshwater species of the section Conjugata. Arch. Protistenk. 146, 101–105 (1995).
    Article  Google Scholar 

    44.
    Li, Q., Chen, X., Jiang, Y. & Jiang, C. in Actinobacteria: Basics and Biotechnological Applications (eds Dhanasekaran, D. & Jiang, Y.) 59–86 (IntechOpen, 2016).

    45.
    Goodfellow, M. et al. Bergey’s Manual of Systematic Bacteriology: Volume Five The Actinobacteria, Part A and B. (Springer-Verlag, 2012).

    46.
    Erikson, D. The morphology, cytology, and taxonomy of the Actinomycetes. Annu. Rev. Microbiol. 3, 23–54 (1949).
    Article  Google Scholar 

    47.
    Gregory, K. F. Hyphal anastomosis and cytological aspects of Streptomyces scabies. Can. J. Microbiol. 2, 649–655 (1956).
    Article  Google Scholar 

    48.
    Higgins, M. L. & Silvey, J. K. G. Slide culture observations of two freshwater Actinomycetes. Trans. Am. Micros. Soc. 85, 390–398 (1966).
    CAS  Article  Google Scholar 

    49.
    Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    O’Donnell, K. L. Zygomycetes in Culture. (Department of Botany, University of Georgia, 1979).

    51.
    Fischer, M. S. & Glass, N. L. Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front. Microbiol. 10, 619 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Webster, J. in Introduction to Fungi (3rd Edn.) (eds Webster, J. & Weber, R.) 165–225 (Cambridge University Press, 2007).

    53.
    Drake, H. et al. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat. Commun. 8, 55 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Bengtson, S. et al. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology 12, 489–496 (2014).
    CAS  PubMed  Article  Google Scholar 

    55.
    Ivarsson, M. et al. Fossilized fungi in subseafloor Eocene basalts. Geology 40, 163–166 (2012).
    ADS  CAS  Article  Google Scholar 

    56.
    Northup, D. et al. Biological investigations in Lechuguilla Cave. NSS Bull. 56, 54–63 (1994).
    Google Scholar 

    57.
    Duane, M. J. Unusual preservation of crustaceans and microbial colonies in a vadose zone, northwest Morocco. Lethaia 36, 21–32 (2003).
    Article  Google Scholar 

    58.
    Kretzschmar, M. Fossile pilze in eisen-stromatolithen von warstein (rheinisches schiefergebirge). Facies 7, 237–259 (1982).
    Article  Google Scholar 

    59.
    Nieves-Rivera, Á. M., Santos-Flores, C. J., Dugan, F. M. & Miller, T. E. Guanophilic fungi in three caves of southwestern Puerto Rico. Int. J. Speleol. 38, 61–70 (2009).
    Article  Google Scholar 

    60.
    Nováková, A. Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int. J. Speleol. 38, 71–82 (2009).
    Article  Google Scholar 

    61.
    Popović, S. et al. Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int. J. Speleol. 44, 141–149 (2015).
    Article  Google Scholar 

    62.
    Schopf, J. W. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J. Paleontol. 42, 651–688 (1968).
    Google Scholar 

    63.
    Strother, P. K. Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA. Rev. Palaeobot. Palynol. 227, 28–41 (2016).
    Article  Google Scholar 

    64.
    Prave, A. R. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30, 811–814 (2002).
    ADS  Article  Google Scholar 

    65.
    Blank, C. E. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting Proterozoic paleobiology and biogeochemical processes in light of trait evolution. J. Phycol. 49, 1040–1055 (2013).
    CAS  PubMed  Article  Google Scholar 

    66.
    Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl. Acad. Sci. USA 114, E7737–E7745 (2017).
    PubMed  Article  CAS  Google Scholar 

    67.
    Föllmi, K. B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40, 55–124 (1996).
    ADS  Article  Google Scholar 

    68.
    Sahoo, S. K. et al. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    69.
    Guo, Z., Peng, X., Czaja, A. D., Chen, S. & Ta, K. Cellular taphonomy of well-preserved Gaoyuzhuang microfossils: a window into the preservation of ancient cyanobacteria. Precambrian Res. 304, 88–98 (2018).
    ADS  CAS  Article  Google Scholar 

    70.
    Czaja, A. D., Beukes, N. J. & Osterhout, J. T. Sulfur-oxidizing bacteria prior to the Great Oxidation Event from the 2.52 Ga Gamohaan Formation of South Africa. Geology 44, 983–986 (2016).
    ADS  CAS  Article  Google Scholar 

    71.
    Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).
    CAS  PubMed  Google Scholar 

    72.
    Zhang, J. et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. J. Anal. Spectrom. 20, 1934–1943 (2014).
    CAS  Article  Google Scholar 

    73.
    Chen, L. et al. Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: an in situ SIMS study with implications for the source of sulfur. Mineral. Depos. 50, 643–656 (2015).
    ADS  CAS  Article  Google Scholar 

    74.
    Roberts, N. M. W. & Walker, R. J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin. Geology 44, 531–534 (2016).
    ADS  CAS  Article  Google Scholar 

    75.
    Roberts, N. M. W. et al. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 18, 2807–2814 (2017).
    ADS  CAS  Article  Google Scholar 

    76.
    Hu, Z. et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. Spectrom. 23, 1093–1101 (2008).
    CAS  Article  Google Scholar 

    77.
    Liu, Y. et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 55, 1535–1546 (2010).
    CAS  Article  Google Scholar 

    78.
    Zhang, Y. & Yuan, X. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia 25, 1–18 (1992).
    Article  Google Scholar 

    79.
    Nie, W., Ma, D., Pan, J., Zhou, J. & Wu, K. δ13C excursions of phosphorite-bearing rocks in Neoproterozoic-Early Cambrian interval in Guizhou, South China: implications for palaeoceanic evolutions. J. Nanjing Univ. Nat. Sci. 42, 257–268 (2006).
    CAS  Google Scholar 

    80.
    Barfod, G. H. et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett. 201, 203–212 (2002).
    ADS  CAS  Article  Google Scholar 

    81.
    Igisu, M. et al. Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambrian Res. 173, 19–26 (2009).
    ADS  CAS  Article  Google Scholar 

    82.
    Wang, X.-H. Interfacial electrochemistry of pyrite oxidation and flotation: II. FTIR studies of xanthate adsorption on pyrite surfaces in neutral pH solutions. J. Colloid Interface Sci. 171, 413–428 (1995).
    ADS  CAS  Article  Google Scholar 

    83.
    Igisu, M. et al. FTIR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng’an, South China. Gondwana Res. 25, 1120–1138 (2014).
    ADS  CAS  Article  Google Scholar 

    84.
    Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorphic. Geol. 20, 859–871 (2002).
    ADS  CAS  Article  Google Scholar 

    85.
    Turcotte, S. B. et al. Application of Raman spectroscopy to metal-sulfide surface analysis. Appl. Opt. 32, 935–938 (1993).
    ADS  CAS  PubMed  Article  Google Scholar  More