Neonicotinoids disrupt memory, circadian behaviour and sleep
1.
Wood, T. J. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. Int. 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x (2017).
CAS Article PubMed PubMed Central Google Scholar
2.
Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).
CAS Article PubMed Google Scholar
3.
Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
Article Google Scholar
4.
Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).
Article Google Scholar
5.
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).
CAS Article PubMed PubMed Central Google Scholar
6.
Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971. https://doi.org/10.1016/j.cub.2019.06.069 (2019).
CAS Article PubMed Google Scholar
7.
Casida, J. E. & Durkin, K. A. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58, 99–117. https://doi.org/10.1146/annurev-ento-120811-153645 (2013).
CAS Article PubMed Google Scholar
8.
Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. . Agron. Sustain. Dev. 33, 243–255. https://doi.org/10.1007/s13593-012-0105-x (2013).
Article Google Scholar
9.
Casida, J. E. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu. Rev. Entomol. 63, 125–144. https://doi.org/10.1146/annurev-ento-020117-043042 (2018).
CAS Article PubMed Google Scholar
10.
Matsuda, K., Ihara, M. & Sattelle, D. B. Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annu. Rev. Pharmacol. Toxicol. 60, 241–255. https://doi.org/10.1146/annurev-pharmtox-010818-021747 (2020).
CAS Article PubMed Google Scholar
11.
Goulson, D. REVIEW: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).
Article Google Scholar
12.
Eng, M. L., Stutchbury, B. J. M. & Morrissey, C. A. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365, 1177. https://doi.org/10.1126/science.aaw9419 (2019).
ADS CAS Article PubMed Google Scholar
13.
Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science (New York, N.Y.) 366, 620. https://doi.org/10.1126/science.aax3442 (2019).
ADS CAS Article Google Scholar
14.
Han, W., Tian, Y. & Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192, 59–65. https://doi.org/10.1016/j.chemosphere.2017.10.149 (2018).
ADS CAS Article PubMed Google Scholar
15.
Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V. L. & Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69. https://doi.org/10.1016/S0048-3575(03)00065-8 (2003).
CAS Article Google Scholar
16.
EFSA. Peer review of the pesticide risk assessment of the active substance thiacloprid. Eur. Food Saf. Auth. J. 17, e05595 https://doi.org/10.2903/j.efsa.2019.5595 (2019).
Article Google Scholar
17.
Nicholls, E. et al. Monitoring neonicotinoid exposure for bees in rural and peri-urban areas of the U.K. during the transition from pre- to post-moratorium. Environ. Sci. Technol. 52, 9391–9402. https://doi.org/10.1021/acs.est.7b06573 (2018).
ADS CAS Article PubMed Google Scholar
18.
Wintermantel, D. et al. Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Sci. Total Environ. 704, 135400. https://doi.org/10.1016/j.scitotenv.2019.135400 (2020).
ADS CAS Article PubMed Google Scholar
19.
Cressey, D. Fears for bees as UK lifts insecticide ban. Nature News. https://www.nature.com/news/fears-for-bees-as-uk-lifts-insecticide-ban-1.18052 (2015).
20.
Lamsa, J., Kuusela, E., Tuomi, J., Juntunen, S. & Watts, P. C. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proc. R. Soc. B 285, 20180506 https://doi.org/10.1098/rspb.2018.0506 (2018).
Article PubMed PubMed Central Google Scholar
21.
Tasman, K., Rands, S. A. & Hodge, J. J. The neonicotinoid insecticide imidacloprid disrupts bumblebee foraging rhythms and sleep. iScience 23, 101827 https://doi.org/10.2139/ssrn.3586989 (2020).
Article PubMed PubMed Central Google Scholar
22.
Palmer, M. J. et al. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat. Commun. 4, 1634. https://doi.org/10.1038/ncomms2648 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
23.
Aso, Y. et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3, e04580. https://doi.org/10.7554/eLife.04580 (2014).
Article PubMed PubMed Central Google Scholar
24.
Barnstedt, O. et al. Memory-relevant mushroom body output synapses are cholinergic. Neuron 89, 1237–1247. https://doi.org/10.1016/j.neuron.2016.02.015 (2016).
CAS Article PubMed PubMed Central Google Scholar
25.
Helfrich-Förster, C. Sleep in insects. Annu. Rev. Entomol. 63, 69–86. https://doi.org/10.1146/annurev-ento-020117-043201 (2018).
CAS Article PubMed Google Scholar
26.
Peng, Y. C. & Yang, E. C. Sublethal dosage of imidacloprid reduces the microglomerular density of honey bee mushroom bodies. Sci. Rep. 6, 19298. https://doi.org/10.1038/srep19298 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
27.
Smith, D. B. et al. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proc. R. Soc. B 287, 20192442. https://doi.org/10.1098/rspb.2019.2442 (2020).
CAS Article PubMed Google Scholar
28.
Andrione, M., Vallortigara, G., Antolini, R. & Haase, A. Neonicotinoid-induced impairment of odour coding in the honeybee. Sci. Rep. 6, 38110. https://doi.org/10.1038/srep38110 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
29.
Chouhan, N. S., Wolf, R., Helfrich-Förster, C. & Heisenberg, M. Flies remember the time of day. Curr. Biol. 25, 1619–1624. https://doi.org/10.1016/j.cub.2015.04.032 (2015).
CAS Article PubMed Google Scholar
30.
Flyer-Adams, J. G. et al. Regulation of olfactory associative memory by the circadian clock output signal Pigment-dispersing factor (PDF). J. Neurosci. 40, 9066–9077https://doi.org/10.1523/JNEUROSCI.0782-20.2020 (2020).
Article PubMed PubMed Central Google Scholar
31.
Zwaka, H. et al. Context odor presentation during sleep enhances memory in honeybees. Curr. Biol. 25(21), 869–2874. https://doi.org/10.1016/j.cub.2015.09.069 (2015).
CAS Article Google Scholar
32.
Seugnet, L., Suzuki, Y., Donlea, J. M., Gottschalk, L. & Shaw, P. J. Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep 34, 137–146. https://doi.org/10.1093/sleep/34.2.137 (2011).
Article PubMed PubMed Central Google Scholar
33.
Tackenberg, M. C. et al. Neonicotinoids disrupt circadian rhythms and sleep in honey bees. Sci. Rep. 10, 17929. https://doi.org/10.1038/s41598-020-72041-3 (2020).
CAS Article PubMed PubMed Central Google Scholar
34.
Helfrich-Forster, C. et al. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J. Neurosci. 22, 9255–9266. https://doi.org/10.1523/JNEUROSCI.22-21-09255.2002 (2002).
Article PubMed PubMed Central Google Scholar
35.
Muraro, N. I. & Ceriani, M. F. Acetylcholine from visual circuits modulates the activity of arousal neurons in Drosophila. J. Neurosci. 35, 16315. https://doi.org/10.1523/JNEUROSCI.1571-15.2015 (2015).
CAS Article PubMed PubMed Central Google Scholar
36.
McCarthy, E. V. et al. Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J. Neurosci. 31, 8181–8193. https://doi.org/10.1523/jneurosci.2017-10.2011 (2011).
CAS Article PubMed PubMed Central Google Scholar
37.
Parisky, K. M. et al. PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60, 672–682. https://doi.org/10.1016/j.neuron.2008.10.042 (2008).
CAS Article PubMed PubMed Central Google Scholar
38.
Ly, S., Pack, A. I. & Naidoo, N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci. Biobehav. Rev. 87, 67–86. https://doi.org/10.1016/j.neubiorev.2018.01.015 (2018).
Article PubMed PubMed Central Google Scholar
39.
Wegener, C., Hamasaka, Y. & Nassel, D. R. Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. J. Neurophysiol. 91, 912–923. https://doi.org/10.1152/jn.00678.2003 (2004).
CAS Article PubMed Google Scholar
40.
Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802. https://doi.org/10.1016/s0092-8674(00)81676-1 (1999).
CAS Article PubMed Google Scholar
41.
Schlichting, M., Menegazzi, P., Rosbash, M. & Helfrich-Förster, C. A distinct visual pathway mediates high-intensity light adaptation of the circadian clock in Drosophila. J. Neurosci. 39, 1621. https://doi.org/10.1523/JNEUROSCI.1497-18.2018 (2019).
CAS Article PubMed PubMed Central Google Scholar
42.
Lelito, K. & Shafer, O. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila’s circadian clock neuron network. J. Neurophysiol. 107, 2096–2108. https://doi.org/10.1152/jn.00931.2011 (2012).
CAS Article PubMed PubMed Central Google Scholar
43.
Nitabach, M. N. et al. Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J. Neurosci. 26, 479–489. https://doi.org/10.1523/jneurosci.3915-05.2006 (2006).
CAS Article PubMed PubMed Central Google Scholar
44.
Cao, G. & Nitabach, M. N. Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J. Neurosci. 28, 6493–6501. https://doi.org/10.1523/jneurosci.1503-08.2008 (2008).
CAS Article PubMed PubMed Central Google Scholar
45.
Fernández, M. P., Berni, J. & Ceriani, M. F. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol. 6, e69. https://doi.org/10.1371/journal.pbio.0060069 (2008).
CAS Article PubMed PubMed Central Google Scholar
46.
Park, J. H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. 97, 3608. https://doi.org/10.1073/pnas.97.7.3608 (2000).
ADS CAS Article PubMed Google Scholar
47.
Martelli, F. et al. Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. Proc. Natl. Acad. Sci. 117(41), 25840–25850. https://doi.org/10.1073/pnas.2011828117 (2020).
CAS Article PubMed Google Scholar
48.
Numata, H., Miyazaki, Y. & Ikeno, T. Common features in diverse insect clocks. Zool. Lett. 1, 10. https://doi.org/10.1186/s40851-014-0003-y (2015).
Article Google Scholar
49.
Farris, S. & Sinakevitch, I. Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct. Dev. 32, 79–101. https://doi.org/10.1016/S1467-8039(03)00009-4 (2003).
Article PubMed Google Scholar
50.
Jones, A. K. & Sattelle, D. B. In Insect Nicotinic Acetylcholine Receptors (ed Thany, S. H.) 25–43 (Springer New York, 2010).
51.
Homem, R. A. et al. Evolutionary trade-offs of insecticide resistance—the fitness costs associated with target-site mutations in the nAChR of Drosophila melanogaster. Mol. Ecol. 29, 2661–2675. https://doi.org/10.1111/mec.15503 (2020).
CAS Article PubMed PubMed Central Google Scholar
52.
Blacquiere, T., Smagghe, G., van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0863-x (2012).
CAS Article PubMed PubMed Central Google Scholar
53.
Stanley, D. A. & Raine, N. E. Bumblebee colony development following chronic exposure to field-realistic levels of the neonicotinoid pesticide thiamethoxam under laboratory conditions. Sci. Rep. 7, 8005. https://doi.org/10.1038/s41598-017-08752-x (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
54.
Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351. https://doi.org/10.1126/science.1215025 (2012).
ADS CAS Article PubMed Google Scholar
55.
Williamson, S. M., Willis, S. J. & Wright, G. A. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 23, 1409–1418. https://doi.org/10.1007/s10646-014-1283-x (2014).
CAS Article PubMed PubMed Central Google Scholar
56.
Wright, G. A., Softley, S. & Earnshaw, H. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees. Sci. Rep. 5, 15322. https://doi.org/10.1038/srep15322 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
57.
Malik, B. R. & Hodge, J. J. Drosophila adult olfactory shock learning. J. Vis. Exp. 90, 50107. https://doi.org/10.3791/50107 (2014).
CAS Article Google Scholar
58.
Hodge, J. J. & Stanewsky, R. Function of the Shaw potassium channel within the Drosophila circadian clock. PLoS ONE 3, e2274–e2274. https://doi.org/10.1371/journal.pone.0002274 (2008).
ADS CAS Article PubMed PubMed Central Google Scholar
59.
Moffat, C. et al. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Sci. Rep. 6, 24764. https://doi.org/10.1038/srep24764 (2016).
ADS Article PubMed PubMed Central Google Scholar
60.
Busto, G. U., Cervantes-Sandoval, I. & Davis, R. L. Olfactory learning in Drosophila. Physiology 25, 338–346. https://doi.org/10.1152/physiol.00026.2010 (2010).
CAS Article PubMed Google Scholar
61.
Lyons, L. C. & Roman, G. Circadian modulation of short-term memory in Drosophila. Learn. Mem. 16, 19–27. https://doi.org/10.1101/lm.1146009 (2009).
Article PubMed PubMed Central Google Scholar
62.
Depetris-Chauvin, A. et al. Adult-specific electrical silencing of pacemaker neurons uncouples the molecular oscillator from circadian outputs. Curr. Biol. 21, 1783–1793. https://doi.org/10.1016/j.cub.2011.09.027 (2011).
CAS Article PubMed PubMed Central Google Scholar
63.
Baz, E.-S., Wei, H., Grosshans, J. & Stengl, M. Calcium responses of circadian pacemaker neurons of the cockroach Rhyparobia maderae to acetylcholine and histamine. J. Comp. Physiol. A. 199, 365–374. https://doi.org/10.1007/s00359-013-0800-3 (2013).
CAS Article Google Scholar
64.
Sheeba, V. et al. Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18, 1537–1545. https://doi.org/10.1016/j.cub.2008.08.033 (2008).
CAS Article PubMed PubMed Central Google Scholar
65.
Thany, S. H. Insect Nicotinic Acetylcholine Receptors (Springer, New York, 2011).
Google Scholar
66.
Gill, R. J. & Raine, N. E. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292 (2014).
Article Google Scholar
67.
Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Phil. Trans. R. Soc. B 372, 20160256. https://doi.org/10.1098/rstb.2016.0256 (2017).
CAS Article Google Scholar
68.
van Alphen, B., Yap, M. H. W., Kirszenblat, L., Kottler, B. & van Swinderen, B. A dynamic deep sleep stage in Drosophila. J. Neurosci. 33, 6917. https://doi.org/10.1523/JNEUROSCI.0061-13.2013 (2013).
CAS Article PubMed PubMed Central Google Scholar
69.
Buhl, E., Higham, J. P. & Hodge, J. J. L. Alzheimer’s disease-associated tau alters Drosophila circadian activity, sleep and clock neuron electrophysiology. Neurobiol. Dis. 130, 104507. https://doi.org/10.1016/j.nbd.2019.104507 (2019).
CAS Article PubMed Google Scholar
70.
Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Signal analysis of behavioral and molecular cycles. BMC Neurosci. 3, 1. https://doi.org/10.1186/1471-2202-3-1 (2002).
Article PubMed PubMed Central Google Scholar
71.
Faville, R., Kottler, B., Goodhill, G. J., Shaw, P. J. & van Swinderen, B. How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Sci. Rep. 5, 8454. https://doi.org/10.1038/srep08454 (2015).
CAS Article PubMed PubMed Central Google Scholar
72.
Donelson, N. C. et al. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE 7, e37250. https://doi.org/10.1371/journal.pone.0037250 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
73.
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676. https://doi.org/10.1038/nmeth.2019 (2012).
CAS Article Google Scholar More