Landscape complexity and US crop production
1.Landis, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12 (2017).
Google Scholar
2.Aguilar, J. et al. Crop species diversity changes in the United States: 1978–2012. PLoS ONE 10, e0136580 (2015).PubMed
PubMed Central
Google Scholar
3.Census of Agriculture (USDA National Agricultural Statistics Service, 2017); www.nass.usda.gov/AgCensus4.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed
Google Scholar
5.Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).ADS
CAS
PubMed
Google Scholar
6.Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).CAS
PubMed
Google Scholar
7.Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2, 2 (2013).
Google Scholar
8.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).ADS
PubMed
PubMed Central
Google Scholar
9.Ojha, S. & Dimov, L. Variation in the diversity-productivity relationship in young forests of the eastern United States. PLoS ONE 12, e0187106 (2017).PubMed
PubMed Central
Google Scholar
10.Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).
Google Scholar
11.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS
PubMed
Google Scholar
12.Bastian, O., Grunewald, K., Syrbe, R. U., Walz, U. & Wende, W. Landscape services: the concept and its practical relevance. Landsc. Ecol. 29, 1463–1479 (2014).
Google Scholar
13.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).ADS
CAS
PubMed
Google Scholar
14.Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).
Google Scholar
15.Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, e8049 (2009).ADS
PubMed
PubMed Central
Google Scholar
16.Swinton, S. M., Lupi, F., Robertson, G. P. & Hamilton, S. K. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64, 245–252 (2007).
Google Scholar
17.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
18.Burchfield, E. K., Nelson, K. S. & Spangler, K. The impact of agricultural landscape diversification on US crop production. Agric. Ecosyst. Environ. 285, 106615 (2019).
Google Scholar
19.Galpern, P., Vickruck, J., Devries, J. H. & Gavin, M. P. Landscape complexity is associated with crop yields across a large temperate grassland region. Agric. Ecosyst. Environ. 290, 106724 (2020).
Google Scholar
20.Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed
PubMed Central
Google Scholar
21.Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Pol. 8, 106–140 (2016).
Google Scholar
22.Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS
Google Scholar
23.Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS
CAS
PubMed
Google Scholar
24.Schauberger, B., Rolinski, S. & Müller, C. A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environ. Res. Lett. 11, 123001 (2016).ADS
Google Scholar
25.Burchfield, E., Matthews-Pennanen, N., Stoebner, J. & Lant, C. Changing yields in the central United States under climate and technological change. Clim. Change 159, 329–346 (2019).ADS
Google Scholar
26.Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).ADS
CAS
PubMed
Google Scholar
27.Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).ADS
Google Scholar
28.Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).PubMed
Google Scholar
29.Grab, H., Danforth, B., Poveda, K. & Loeb, G. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 28, 348–355 (2018).PubMed
Google Scholar
30.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed
PubMed Central
Google Scholar
31.Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
32.Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).
Google Scholar
33.Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).
Google Scholar
34.Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2012).
Google Scholar
35.Swift, M. J., Izac, A.-M. N. & van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric. Ecosyst. Environ. 104, 113–134 (2004).
Google Scholar
36.CropScrape—Cropland Data Layer (USDA National Agricultural Statistics Service, 2018); https://nassgeodata.gmu.edu/CropScape/37.Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).CAS
PubMed
PubMed Central
Google Scholar
38.Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).PubMed
PubMed Central
Google Scholar
39.Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).CAS
PubMed
Google Scholar
40.Brandes, E. et al. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 11, 014009 (2016).ADS
Google Scholar
41.Capmourteres, V. et al. Precision conservation meets precision agriculture: a case study from southern Ontario. Agric. Syst. 167, 176–185 (2018).
Google Scholar
42.Census of Agriculture (USDA National Agricultural Statistics Service, 2019); www.nass.usda.gov/AgCensus43.Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
44.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).
Google Scholar
45.PRISM Climate Data (PRISM Climate Group, 2004) http://www.prism.oregonstate.edu/46.Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant Stages (Montana State University, 2001); http://store.msuextension.org/publications/AgandNaturalResources/MT200103AG.pdf47.agweather connection (Mesonet, 2007); https://www.mesonet.org/mesonet_connection/V2_No8.pdf48.Corn Growing Degree Days (NDAWN: North Dakota Agricultural Weather Network, 2017); https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html49.Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States (US Department of Agriculture, Natural Resources Conservation Service, 2014); https://gdg.sc.egov.usda.gov/50.Dobos, R. R., Sinclair, H. R., Jr & Robotham, M. P. User Guide for the National Commodity Crop Productivity Index (NCCPI, 2012).51.Plexida, S. G., Sfougaris, A. I., Ispikoudis, I. P. & Papanastasis, V. P. Selecting landscape metrics as indicators of spatial heterogeneity—a comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 26, 26–35 (2014).ADS
Google Scholar
52.Schindler, S., Poirazidis, K. & Wrbka, T. Towards a core set of landscape metrics for biodiversity assessments: a case study from Dadia National Park, Greece. Ecol. Indic. 8, 502–514 (2008).
Google Scholar
53.Turner, M. G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 4, 21–30 (1990).
Google Scholar
54.Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).
Google Scholar
55.Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1–10 (2019).
Google Scholar
56.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/57.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).MathSciNet
MATH
Google Scholar
58.Blanc, E. & Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 11, 258–279 (2017).
Google Scholar
59.Level III Ecoregions of the Continental United States (US Environmental Protection Agency, 2011); https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states60.Bakka, H. et al. Spatial modeling with R-INLA: a review. Wiley Interdiscip. Rev. Comput. Stat. 10, e1443 (2018).MathSciNet
Google Scholar
61.2018 Cartographic Boundary Files [data set] (US Census Bureau, 2018); https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html More