in

Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery

[adace-ad id="91168"]
  • 1.

    Behrens, P., van Vliet, M. T. H., Nanninga, T., Walsh, B. & Rodrigues, J. F. D. Climate change and the vulnerability of electricity generation to water stress in the European Union. Nat. Energy 2, 17114 (2017).

    • Article
    • Google Scholar
  • 2.

    Ganguli, P., Kumar, D. & Ganguly, A. R. US power production at risk from water stress in a changing climate. Sci. Rep. 7, 11983 (2017).

    • Article
    • Google Scholar
  • 3.

    Water Energy Nexus WEO-2016 Special Report (International Energy Agency, 2016); https://doi.org/10.1021/es903811p

    • Article
    • Google Scholar
  • 4.

    van Vliet, M. T. H. et al. Vulnerability of US and European electricity supply to climate change. Nat. Clim. Change 2, 676–681 (2012).

    • Article
    • Google Scholar
  • 5.

    Roehrkasten, S., Schaeuble, D. & Helgenberger, S. Secure and Sustainable Power Generation in a Water-Constrained World (Institute for Advanced Sustainability Studies, 2015).

  • 6.

    McDermott, G. & Nilsen, O. Electricity prices, river temperatures, and cooling water scarcity. Land Econ. 90, 131–148 (2014).

    • Article
    • Google Scholar
  • 7.

    Boogert, A. & Dupont, D. The nature of supply side effects on electricity prices: the impact of water temperature. Econ. Lett. 88, 121–125 (2005).

    • Article
    • Google Scholar
  • 8.

    Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H. & Marks, D. H. The water consumption of energy production: an international comparison. Environ. Res. Lett. 9, 105002 (2014).

    • Article
    • Google Scholar
  • 9.

    Kenny, J. F. et al. Estimated Use of Water in the United States in 2005 Circular 1344 (US Geological Survey, 2009); https://doi.org/10.3133/cir1405

  • 10.

    Luo, T., Krishnaswami, A. & Li, X. A Methodology to Estimate Water Demand for Thermal Power Plants in Data-Scarce Regions using Satellite Images Technical Note (World Research Institute, 2018); https://www.wri.org/publication/methodology-estimate-water-demand-thermal-power-plants-data-scarce-regions

  • 11.

    Diehl, T. H., Harris, M. A., Murphy, J. C., Hutson, S. S. & Ladd, D. E. Methods for Estimating Water Consumption for Thermoelectric Power Plants in the United States Scientific Investigations Report 2013–5188 (US Geological Survey, 2013); https://doi.org/10.3133/sir20135188

  • 12.

    Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob. Environ. Change 23, 144–156 (2013).

    • Article
    • Google Scholar
  • 13.

    Biesheuvel, A., Witteveen+Bos, Cheng, I., Liu, X. & Greenpeace International. Methods and Results Report: Modelling Global Water Demand for Coal Based Power Generation (Witteveen + Boss, Greenpeace, 2016).

  • 14.

    Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).

    • Article
    • Google Scholar
  • 15.

    van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    • Article
    • Google Scholar
  • 16.

    Vassolo, S. & Döll, P. Global-scale gridded estimates of thermoelectric power and manufacturing water use. Water Resour. Res. 41, 1–11 (2005).

    • Article
    • Google Scholar
  • 17.

    Siddiqi, A. & Anadon, L. D. The water–energy nexus in Middle East and North Africa. Energy Policy 39, 4529–4540 (2011).

    • Article
    • Google Scholar
  • 18.

    GWSP Global Water System Project Digital Water Atlas (Global Water System Project, 2008); http://atlas.gwsp.org/

  • 19.

    Maulbetsch, J. & Stallings, J. Evaluating the economics of alternative cooling technologies. Power Eng. 116, 120–128 (2012).

    • Google Scholar
  • 20.

    Masson-Delmotte et al. Global Warming of 1.5 °C Special Report (IPCC, 2018).

  • 21.

    Bogdanov, D. et al. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077 (2019).

    • Article
    • Google Scholar
  • 22.

    Jacobson, M. Z. et al. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renew. Energy 123, 236–248 (2018).

    • Article
    • Google Scholar
  • 23.

    Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).

    • Article
    • Google Scholar
  • 24.

    Sgouridis, S., Csala, D. & Bardi, U. The sower’s way: quantifying the narrowing net-energy pathways to a global energy transition. Environ. Res. Lett. 11, 094009 (2016).

    • Article
    • Google Scholar
  • 25.

    Teske, S. Achieving the Paris Climate Agreement Goals (Springer International, 2019).

  • 26.

    GlobalData Power (GlobalData Ltd, accessed 20 November 2015); http://power.globaldata.com/Home.aspx

  • 27.

    Tracking Clean Energy Progress 2017 (International Energy Agency, 2017); https://www.iea.org/etp/tracking2017/

  • 28.

    World Nuclear Performance Report (World Nuclear Association, 2016).

  • 29.

    Global Energy Transformation: A Roadmap to 2050 (IRENA, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf

  • 30.

    Hansen, K., Breyer, C. & Lund, H. Status and perspectives on 100% renewable energy systems. Energy 175, 471–480 (2019).

    • Article
    • Google Scholar
  • 31.

    Form EIA-923 Detailed Data with Previous Form Data (EIA-906/920) (US Energy Information Administration, accessed 29 June 2019); https://www.eia.gov/electricity/data/eia923/

  • 32.

    Diehl, T. H. & Harris, M. A. Withdrawal and Consumption of Water by Thermoelectric Power Plants in the United States, 2010 Science Investigation Report 2014-5184 (US Geological Survey, 2014); https://doi.org/10.3133/sir20145184

  • 33.

    Farfan, J. & Breyer, C. Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. J. Clean. Prod. 141, 370–384 (2017).

    • Article
    • Google Scholar
  • 34.

    Wong, C., Williams, C., Pittock, J., Collier, U. & Schelle, P. World’s Top 10 Rivers at Risk (WWF, 2007); http://d2ouvy59p0dg6k.cloudfront.net/downloads/worldstop10riversatriskfinalmarch13_1.pdf

  • 35.

    Biggs, E. M. et al. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy 54, 389–397 (2015).

    • Article
    • Google Scholar
  • 36.

    Greenpeace, GWEC & SolarPower Europe. Energy [R]evolution: A Sustainable World Energy Outlook 2015 (Greenpeace International, 2015).

  • 37.

    Brown, T. W. et al. Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew. Sustain. Energy Rev. 92, 834–847 (2018).

    • Article
    • Google Scholar
  • 38.

    Clean Water and Sanitation: Why It Matters (United Nations, 2016); https://www.un.org/sustainabledevelopment/wp-content/uploads/2016/08/6_Why-it-Matters_Sanitation_2p.pdf

  • 39.

    World Electric Power Plants Database (S&P Global Platts, 2016).

  • 40.

    Renewable Energy Capacity Statistics 2015 (IRENA, 2015).

  • 41.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    • Article
    • Google Scholar
  • 42.

    Gerlach, A., Werner, C., Gerlach, A., Breyer, C. & Orlandi, S. In Proc. of the 31st European Photovoltaic Solar Energy Conference (eds Rink, S., Helm, P & Taylor, N.) 2965–2973 (WIP Renewable Energies, 2015).

  • 43.

    Schaap, D. M. A. & Lowry, R. K. SeaDataNet—Pan-European infrastructure for ocean and marine data management. Int. J. Digit. Earth 3, 50–69 (2010).

    • Article
    • Google Scholar
  • 44.

    Form EIA-860 detailed data with previous form data (EIA-860A/860B) (Energy Information Administration, accessed 29 June 2019); https://www.eia.gov/electricity/data/eia860/

  • 45.

    Morton, V. & Echeverri, D. P. Electric Power Plant Water Use in North Carolina: Forced Evaporation and Emission Controls. MSc Thesis, Duke Univ. (2010).

  • 46.

    Feeley, T. J. et al. Water: a critical resource in the thermoelectric power industry. Energy 33, 1–11 (2008).

    • Article
    • Google Scholar
  • 47.

    Statistics. Global Energy Data at your Fingertips (International Energy Agency, 2018).

  • 48.

    Electric Power Monthly (US Energy Information Administration, accessed 29 June 2019); https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_1_01

  • 49.

    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).

    • Article
    • Google Scholar
  • 50.

    Zhou, Y. & Tol, R. S. J. Evaluating the costs of desalination and water transport. Water Resour. Res. 41, 1–10 (2005).

    • Article
    • Google Scholar
  • 51.

    Cooling Power Plants (World Nuclear Association, accessed 1 November 2017); http://www.world-nuclear.org/information-library/current-and-future-generation/cooling-power-plants.aspx

  • 52.

    Groves, J., Krankkala, T. & Nigent, G. Afton combined cycle with hybrid cooling. Power Engineering 114, 56–60 (2010).

    • Google Scholar
  • 53.

    Farfan, J. & Breyer, C. Aging of European power plant infrastructure as an opportunity to evolve towards sustainability. Int. J. Hydrog. Energy 42, 18081–18091 (2017).

    • Article
    • Google Scholar
  • 54.

    Rivers + lake centerlines (Natural Earth, 2016); https://www.naturalearthdata.com/downloads/50m-physical-vectors/50m-rivers-lake-centerlines/


  • Source: Resources - nature.com

    Continuing a legacy of Antarctic exploration

    Coated seeds may enable agriculture on marginal lands