More stories

  • in

    Moving past the Iron Age

    MIT graduate student Sydney Rose Johnson has never seen the steel mills in central India. She’s never toured the American Midwest’s hulking steel plants or the mini mills dotting the Mississippi River. But in the past year, she’s become more familiar with steel production than she ever imagined.

    A fourth-year dual degree MBA and PhD candidate in chemical engineering and a graduate research assistant with the MIT Energy Initiative (MITEI) as well as a 2022-23 Shell Energy Fellow, Johnson looks at ways to reduce carbon dioxide (CO2) emissions generated by industrial processes in hard-to-abate industries. Those include steel.

    Almost every aspect of infrastructure and transportation — buildings, bridges, cars, trains, mass transit — contains steel. The manufacture of steel hasn’t changed much since the Iron Age, with some steel plants in the United States and India operating almost continually for more than a century, their massive blast furnaces re-lined periodically with carbon and graphite to keep them going.

    According to the World Economic Forum, steel demand is projected to increase 30 percent by 2050, spurred in part by population growth and economic development in China, India, Africa, and Southeast Asia.

    The steel industry is among the three biggest producers of CO2 worldwide. Every ton of steel produced in 2020 emitted, on average, 1.89 tons of CO2 into the atmosphere — around 8 percent of global CO2 emissions, according to the World Steel Association.

    A combination of technical strategies and financial investments, Johnson notes, will be needed to wrestle that 8 percent figure down to something more planet-friendly.

    Johnson’s thesis focuses on modeling and analyzing ways to decarbonize steel. Using data mined from academic and industry sources, she builds models to calculate emissions, costs, and energy consumption for plant-level production.

    “I optimize steel production pathways using emission goals, industry commitments, and cost,” she says. Based on the projected growth of India’s steel industry, she applies this approach to case studies that predict outcomes for some of the country’s thousand-plus factories, which together have a production capacity of 154 million metric tons of steel. For the United States, she looks at the effect of Inflation Reduction Act (IRA) credits. The 2022 IRA provides incentives that could accelerate the steel industry’s efforts to minimize its carbon emissions.

    Johnson compares emissions and costs across different production pathways, asking questions such as: “If we start today, what would a cost-optimal production scenario look like years from now? How would it change if we added in credits? What would have to happen to cut 2005 levels of emissions in half by 2030?”

    “My goal is to gain an understanding of how current and emerging decarbonization strategies will be integrated into the industry,” Johnson says.

    Grappling with industrial problems

    Growing up in Marietta, Georgia, outside Atlanta, the closest she ever came to a plant of any kind was through her father, a chemical engineer working in logistics and procuring steel for an aerospace company, and during high school, when she spent a semester working alongside chemical engineers tweaking the pH of an anti-foaming agent.

    At Kennesaw Mountain High School, a STEM magnet program in Cobb County, students devote an entire semester of their senior year to an internship and research project.

    Johnson chose to work at Kemira Chemicals, which develops chemical solutions for water-intensive industries with a focus on pulp and paper, water treatment, and energy systems.

    “My goal was to understand why a polymer product was falling out of suspension — essentially, why it was less stable,” she recalls. She learned how to formulate a lab-scale version of the product and conduct tests to measure its viscosity and acidity. Comparing the lab-scale and regular product results revealed that acidity was an important factor. “Through conversations with my mentor, I learned this was connected with the holding conditions, which led to the product being oxidized,” she says. With the anti-foaming agent’s problem identified, steps could be taken to fix it.

    “I learned how to apply problem-solving. I got to learn more about working in an industrial environment by connecting with the team in quality control as well as with R&D and chemical engineers at the plant site,” Johnson says. “This experience confirmed I wanted to pursue engineering in college.”

    As an undergraduate at Stanford University, she learned about the different fields — biotechnology, environmental science, electrochemistry, and energy, among others — open to chemical engineers. “It seemed like a very diverse field and application range,” she says. “I was just so intrigued by the different things I saw people doing and all these different sets of issues.”

    Turning up the heat

    At MIT, she turned her attention to how certain industries can offset their detrimental effects on climate.

    “I’m interested in the impact of technology on global communities, the environment, and policy. Energy applications affect every field. My goal as a chemical engineer is to have a broad perspective on problem-solving and to find solutions that benefit as many people, especially those under-resourced, as possible,” says Johnson, who has served on the MIT Chemical Engineering Graduate Student Advisory Board, the MIT Energy and Climate Club, and is involved with diversity and inclusion initiatives.

    The steel industry, Johnson acknowledges, is not what she first imagined when she saw herself working toward mitigating climate change.

    “But now, understanding the role the material has in infrastructure development, combined with its heavy use of coal, has illuminated how the sector, along with other hard-to-abate industries, is important in the climate change conversation,” Johnson says.

    Despite the advanced age of many steel mills, some are quite energy-efficient, she notes. Yet these operations, which produce heat upwards of 3,000 degrees Fahrenheit, are still emission-intensive.

    Steel is made from iron ore, a mixture of iron, oxygen, and other minerals found on virtually every continent, with Brazil and Australia alone exporting millions of metric tons per year. Commonly based on a process dating back to the 19th century, iron is extracted from the ore through smelting — heating the ore with blast furnaces until the metal becomes spongy and its chemical components begin to break down.

    A reducing agent is needed to release the oxygen trapped in the ore, transforming it from its raw form to pure iron. That’s where most emissions come from, Johnson notes.

    “We want to reduce emissions, and we want to make a cleaner and safer environment for everyone,” she says. “It’s not just the CO2 emissions. It’s also sometimes NOx and SOx [nitrogen oxides and sulfur oxides] and air pollution particulate matter at some of these production facilities that can affect people as well.”

    In 2020, the International Energy Agency released a roadmap exploring potential technologies and strategies that would make the iron and steel sector more compatible with the agency’s vision of increased sustainability. Emission reductions can be accomplished with more modern technology, the agency suggests, or by substituting the fuels producing the immense heat needed to process ore. Traditionally, the fuels used for iron reduction have been coal and natural gas. Alternative fuels include clean hydrogen, electricity, and biomass.

    Using the MITEI Sustainable Energy System Analysis Modeling Environment (SESAME), Johnson analyzes various decarbonization strategies. She considers options such as switching fuel for furnaces to hydrogen with a little bit of natural gas or adding carbon-capture devices. The models demonstrate how effective these tactics are likely to be. The answers aren’t always encouraging.

    “Upstream emissions can determine how effective the strategies are,” Johnson says. Charcoal derived from forestry biomass seemed to be a promising alternative fuel, but her models showed that processing the charcoal for use in the blast furnace limited its effectiveness in negating emissions.

    Despite the challenges, “there are definitely ways of moving forward,” Johnson says. “It’s been an intriguing journey in terms of understanding where the industry is at. There’s still a long way to go, but it’s doable.”

    Johnson is heartened by the steel industry’s efforts to recycle scrap into new steel products and incorporate more emission-friendly technologies and practices, some of which result in significantly lower CO2 emissions than conventional production.

    A major issue is that low-carbon steel can be more than 50 percent more costly than conventionally produced steel. “There are costs associated with making the transition, but in the context of the environmental implications, I think it’s well worth it to adopt these technologies,” she says.

    After graduation, Johnson plans to continue to work in the energy field. “I definitely want to use a combination of engineering knowledge and business knowledge to work toward mitigating climate change, potentially in the startup space with clean technology or even in a policy context,” she says. “I’m interested in connecting the private and public sectors to implement measures for improving our environment and benefiting as many people as possible.” More

  • in

    Soaring high, in the Army and the lab

    Starting off as a junior helicopter pilot, Lt. Col. Jill Rahon deployed to Afghanistan three times. During the last one, she was an air mission commander, the  pilot who is designated to interface with the ground troops throughout the mission.

    Today, Rahon is a fourth-year doctoral student studying applied physics at the Department of Nuclear Science and Engineering (NSE). Under the supervision of Areg Danagoulian, she is working on engineering solutions for enforcement of nuclear nonproliferation treaties. Rahon and her husband have 2-year-old twins: “They have the same warm relationship with my advisor that I had with my dad’s (PhD) advisor,” she says.

    Jill Rahon: Engineering solutions for enforcement of nuclear nonproliferation treaties

    A path to the armed forces

    The daughter of a health physicist father and a food chemist mother, Rahon grew up in the Hudson Valley, very close to New York City. Nine-eleven was a life-altering event: “Many of my friends’ fathers and uncles were policemen and firefighters [who] died responding to the attacks,” Rahon says. A hurt and angry teenager, Rahon was determined to do her part to help: She joined the Army and decided to pursue science, becoming part of the first class to enter West Point after 9/11.

    Rahon started by studying strategic history, a field that covers treaties and geopolitical relationships. It would prove useful later. Inspired by her father, who works in the nuclear field, Rahon added on a nuclear science and engineering track.

    After graduating from West Point, Rahon wanted to join active combat and chose aviation. At flight school in Fort Novosel, Alabama, she discovered that she loved flying. It was there that Rahon learned to fly the legendary Chinook helicopter. In short order, Rahon was assigned to the 101st Airborne Division and deployed to Afghanistan quickly thereafter.

    As expected, flying in Afghanistan, especially on night missions, was adrenaline-charged. “You’re thinking on the fly, you’re talking on five different radios, you’re making decisions for all the helicopters that are part of the mission,” Rahon remembers. Very often Rahon and her cohorts did not have the luxury of time. “We would get information that would need to be acted on quickly,” she says. During the planning meetings, she would be delighted to see a classmate from West Point function as the ground forces commander. “It would be surprising to see somebody you knew from a different setting halfway around the world, working toward common goals,” Rahon says.

    Also awesome: helping launch the first training program for female pilots to be recruited in the Afghan National Air Force. “I got to meet [and mentor] these strong young women who maybe didn’t have the same encouragement that I had growing up and they were out there hanging tough,” Rahon says.

    Exploring physics and nuclear engineering

    After serving in the combat forces, Rahon decided she wanted to teach physics at West Point. She applied to become a part of the Functional Area (FA52) as a nuclear and countering weapons of mass destruction officer.

    FA52 officers provide nuclear technical advice to maneuver commanders about nuclear weapons, effects, and operating in a nuclear environment or battlefield. Rahon’s specialty is radiation detection and operations in a nuclear environment, which poses unique threats and challenges to forces.

    Knowing she wanted to teach at West Point, she “brushed up extensively on math and physics” and applied to MIT NSE to pursue a master’s degree. “My fellow students were such an inspiration. They might not have had the same life experiences that I had but were still so mature and driven and knowledgeable not only about nuclear engineering but how that fits in the energy sector and in politics,” Rahon says.

    Resonance analysis to verify treaties

    Rahon returned to NSE to pursue her doctorate, where she does a “lot of detection and treaty verification work.”

    When looking at nuclear fuels to verify safeguards for treaties, experts search for the presence and quantities of heavy elements such as uranium, plutonium, thorium, and any of their decay products. To do so nondestructively is of high importance so they don’t destroy a piece of the material or fuel to identify it.

    Rahon’s research is built on resonance analysis, the fact that most midrange to heavy isotopes have unique resonance signatures that are accessed by neutrons of epithermal energy, which is relatively low on the scale of possible neutron energies. This means they travel slowly — crossing a distance of 2 meters in tens of microseconds, permitting their detection time to be used to calculate their energy.

    Studying how neutrons of a particular energy interact with a sample to identify worrisome nuclear materials is much like studying fingerprints to solve crimes. Isotopes that have a spike in likelihood of interaction occurring over a small neutron energy are said to have resonances, and these resonance patterns are isotopically unique. Experts can use this technique to nondestructively assess an item, identifying the constituent isotopes and their concentrations.

    Resonance analysis can be used to verify that the fuels are what the nuclear plant owner says they are. “There are a lot of safeguards activities and verification protocols that are managed by the International Atomic Energy Agency (IAEA) to ensure that a state is not misusing nuclear power for ulterior motives,” Rahon points out. And her method helps.

    “Our technique that leverages resonance analysis is nothing new,” Rahon says, “It’s been applied practically since the ’70s at very large beam facilities, hundreds of meters long with a very large accelerator that pulses neutrons, and then you’re able to correlate a neutron time of flight with a resonance profile. What we’ve done that is novel is we’ve shrunk it down to a 3-meter system with a portable neutron residence generator and a 2-meter beam path,” she says.

    Mobility confers many significant advantages: “This is something that could be conceivably put on the back of a truck and moved to a fuel facility, then driven to the next one for inspections or put at a treaty verification site. It could be taken out to a silo field where they are dismantling nuclear weapons,” Rahon says. However, the miniaturization does come with significant challenges, such as the neutron generator’s impacts on the signal to noise ratio.

    Rahon is delighted her research can ensure that a necessary fuel source will not be misused. “We need nuclear power. We need low-carbon solutions for energy and we need safe ones. We need to ensure that this powerful technology is not being misused. And that’s why these engineering solutions are needed for these safeguards,” she says.

    Rahon sees parallels between her time in active duty and her doctoral research. Teamwork and communication are key in both, she says. Her dad is her role model and Rahon is a firm believer in mentorship, something she nurtured both in the armed forces and at MIT. “My advisor is genuinely a wonderful person who has always given me so much support from not only being a student, but also being a parent,” Rahon adds.

    In turn, Danagoulian has been impressed by Rahon’s remarkable abilities: “Raising twins, doing research in applied nuclear physics, and flying coalition forces into Taliban territory while evading ground fire … [Jill] developed her own research project with minimal help from me and defended it brilliantly during the first part of the exam,” he says. 

    It seems that Rahon flies high no matter which mission she takes on. More

  • in

    Food for thought

    MIT graduate student Juana De La O describes herself as a food-motivated organism, so it’s no surprise that she reaches for food and baking analogies when she’s discussing her thesis work in the lab of undergraduate officer and professor of biology Adam Martin. 

    Consider the formative stages of a croissant, she offers, occasionally providing homemade croissants to accompany the presentation: When one is forming the puff pastry, the dough is folded over the butter again and again. Tissues in a developing mouse embryo must similarly fold and bend, creating layers and structures that become the spine, head, and organs — but these tissues have no hands to induce those formative movements. 

    De La O is studying neural tube closure, the formation of the structure that becomes the spinal cord and the brain. Disorders like anencephaly and craniorachischisis occur when the head region fails to close in a developing fetus. It’s a heartbreaking defect, De La O says, because it’s 100 percent lethal — but the fetus fully develops otherwise. 

    “Your entire central nervous system hinges on this one event happening successfully,” she says. “On the fundamental level, we have a very limited understanding of the mechanisms required for neural closure to happen at all, much less an understanding of what goes wrong that leads to those defects.” 

    Hypothetically speaking

    De La O hails from Chicago, where she received an undergraduate degree from the University of Chicago and worked in the lab of Ilaria Rebay. De La O’s sister was the first person in her family to go to and graduate from college — De La O, in turn, is the first person in her family to pursue a PhD. 

    From her first time visiting campus, De La O could see MIT would provide a thrilling environment in which to study.

    “MIT was one of the few places where the students weren’t constantly complaining about how hard their life was,” she says. “At lunch with prospective students, they’d be talking to each other and then just organically slip into conversations about science.”

    The department emails acceptance letters and sends a physical copy via snail mail. De La O’s letter included a handwritten note from department head Amy Keating, then a graduate officer, who had interviewed De La O during her campus visit. 

    “That’s what really sold it for me,” she recalls. “I went to my PI [principal investigator]’s office and said, ‘I have new data’” and I showed her the letter, and there was lots of unintelligible crying.” 

    To prepare her for graduate school, her parents, both immigrants from Mexico, spent the summer teaching De La O to make all her favorite dishes because “comfort food feels like home.”   

    When she reached MIT, however, the Covid-19 pandemic ground the world to a halt and severely limited what students could experience during rotations. Far from home and living alone, De La O taught herself to bake, creating the confections she craved but couldn’t leave her apartment to purchase. De La O didn’t get to work as extensively as she would have liked during her rotation in the Martin lab. 

    Martin had recently returned from a sabbatical that was spent learning a new research model; historically a fly lab, Martin was planning to delve into mouse research. 

    “My final presentation was, ‘Here’s a hypothetical project I would hypothetically do if I were hypothetically going to work with mice in a fly lab,’” De La O says. 

    Martin recalls being impressed. De La O is skilled at talking about science in an earnest and engaging way, and she dug deep into the literature and identified points Martin hadn’t considered. 

    “This is a level of independence that I look for in a student because it is important to the science to have someone who is contributing their ideas and independent reading and research to a project,” Martin says. 

    After agreeing to join the lab — news she shared with Martin via a meme — she got to work. 

    Charting mouse development

    The neural tube forms from a flat sheet whose sides rise and meet to create a hollow cylinder. De La O has observed patterns of actin and myosin changing in space and time as the embryo develops. Actin and myosin are fibrous proteins that provide structure in eukaryotic cells. They are responsible for some cell movement, like muscle contraction or cell division. Fibers of actin and myosin can also connect across cells, forming vast networks that coordinate the movements of whole tissues. By looking at the structure of these networks, researchers can make predictions about how force is affecting those tissues.

    De La O has found indications of a difference in the tension across the tissue during the critical stages of neural tube closure, which contributes to the tissue’s ability to fold and form a tube. They are not the first research group to propose this, she notes, but they’re suggesting that the patterns of tension are not uniform during a single stage of development.

    “My project, on a really fundamental level, is an atlas for a really early stage of mouse development for actin and myosin,” De La O says. “This dataset doesn’t exist in the field yet.” 

    However, De La O has been performing analyses exclusively in fixed samples, so she may be quantifying phenomena that are not actually how tissues behave. To determine whether that’s the case, De La O plans to analyze live samples.

    The idea is that if one could carefully cut tissue and observe how quickly it recoils, like slicing through a taught rubber band, those measurements could be used to approximate force across the tissue. However, the techniques required are still being developed, and the greater Boston area currently lacks the equipment and expertise needed to attempt those experiments. 

    A big part of her work in the lab has been figuring out how to collect and analyze relevant data. This research has already taken her far and wide, both literally and virtually. 

    “We’ve found that people have been very generous with their time and expertise,” De La O says. “One of the benefits we, as fly people, brought into this field is we don’t know anything — so we’re going to question everything.”

    De La O traveled to the University of Virginia to learn live imaging techniques from associate professor of cell biology Ann Sutherland, and she’s also been in contact with Gabriel Galea at University College London, where Martin and De La O are considering a visit for further training. 

    “There are a lot of reasons why these experiments could go wrong, and one of them is that I’m not trained yet,” she says. “Once you know how to do things on an optimal setup, you can figure out how to make it work on a less-optimal setup.”

    Collaboration and community

    De La O has now expanded her cooking repertoire far beyond her family’s recipes and shares her new creations when she visits home. At MIT, she hosts dinner parties, including one where everything from the savory appetizers to the sweet desserts contained honey, thanks to an Independent Activities Period course about the producers of the sticky substance, and she made and tried apple pie for the first time with her fellow graduate students after an afternoon of apple picking. 

    De La O says she’s still learning how to say no to taking on additional work outside of her regular obligations as a PhD student; she’s found there’s a lot of pressure for underrepresented students to be at the forefront of diversity efforts, and although she finds that work extremely fulfilling, she can, and has, stretched herself too thin in the past. 

    “Every time I see an application that asks ‘How will you work to increase diversity,’ my strongest instinct is just to write ‘I’m brown and around — you’re welcome,’” she jokes. “The greatest amount of diversity work I will do is to get where I’m going. Me achieving my goals increases diversity inherently, but I also want to do well because I know if I do, I will make everything better for people coming after me.”

    De La O is confident her path will be in academia, and troubleshooting, building up protocols, and setting up standards for her work in the Martin Lab has been “an excellent part of my training program.” 

    De La O and Martin embarked on a new project in a new model for the lab for De La O’s thesis, so much of her graduate studies will be spent laying the groundwork for future research. 

    “I hope her travels open Juana’s eyes to science being a larger community and to teach her about how to lead a collaboration,” Martin says. “Overall, I think this project is excellent for a student with aspirations to be a PI. I benefited from extremely open-ended projects as a student and see, in retrospect, how they prepared me for my work today.” More

  • in

    The future of motorcycles could be hydrogen

    MIT’s Electric Vehicle Team, which has a long record of building and racing innovative electric vehicles, including cars and motorcycles, in international professional-level competitions, is trying something very different this year: The team is building a hydrogen-powered electric motorcycle, using a fuel cell system, as a testbed for new hydrogen-based transportation.

    The motorcycle successfully underwent its first full test-track demonstration in October. It is designed as an open-source platform that should make it possible to swap out and test a variety of different components, and for others to try their own versions based on plans the team is making freely available online.

    Aditya Mehrotra, who is spearheading the project, is a graduate student working with mechanical engineering professor Alex Slocum, the Walter M. May  and A. Hazel May Chair in Emerging Technologies. Mehrotra was studying energy systems and happened to also really like motorcycles, he says, “so we came up with the idea of a hydrogen-powered bike. We did an evaluation study, and we thought that this could actually work. We [decided to] try to build it.”

    Team members say that while battery-powered cars are a boon for the environment, they still face limitations in range and have issues associated with the mining of lithium and resulting emissions. So, the team was interested in exploring hydrogen-powered vehicles as a clean alternative, allowing for vehicles that could be quickly refilled just like gasoline-powered vehicles.

    Unlike past projects by the team, which has been part of MIT since 2005, this vehicle will not be entering races or competitions but will be presented at a variety of conferences. The team, consisting of about a dozen students, has been working on building the prototype since January 2023. In October they presented the bike at the Hydrogen Americas Summit, and in May they will travel to the Netherlands to present it at the World Hydrogen Summit. In addition to the two hydrogen summits, the team plans to show its bike at the Consumer Electronics Show in Las Vegas this month.

    “We’re hoping to use this project as a chance to start conversations around ‘small hydrogen’ systems that could increase demand, which could lead to the development of more infrastructure,” Mehrotra says. “We hope the project can help find new and creative applications for hydrogen.” In addition to these demonstrations and the online information the team will provide, he adds, they are also working toward publishing papers in academic journals describing their project and lessons learned from it, in hopes of making “an impact on the energy industry.”

    Play video

    For the love of speed: Building a hydrogen-powered motorcycle

    The motorcycle took shape over the course of the year piece by piece. “We got a couple of industry sponsors to donate components like the fuel cell and a lot of the major components of the system,” he says. They also received support from the MIT Energy Initiative, the departments of Mechanical Engineering and Electrical Engineering and Computer Science, and the MIT Edgerton Center.

    Initial tests were conducted on a dynamometer, a kind of instrumented treadmill Mehrotra describes as “basically a mock road.” The vehicle used battery power during its development, until the fuel cell, provided by South Korean company Doosan, could be delivered and installed. The space the group has used to design and build the prototype, the home of the Electric Vehicle Team, is in MIT’s Building N51 and is well set up to do detailed testing of each of the bike’s components as it is developed and integrated.

    Elizabeth Brennan, a senior in mechanical engineering, says she joined the team in January 2023 because she wanted to gain more electrical engineering experience, “and I really fell in love with it.” She says group members “really care and are very excited to be here and work on this bike and believe in the project.”

    Brennan, who is the team’s safety lead, has been learning about the safe handling methods required for the bike’s hydrogen fuel, including the special tanks and connectors needed. The team initially used a commercially available electric motor for the prototype but is now working on an improved version, designed from scratch, she says, “which gives us a lot more flexibility.”

    As part of the project, team members are developing a kind of textbook describing what they did and how they carried out each step in the process of designing and fabricating this hydrogen electric fuel-cell bike. No such motorcycle yet exists as a commercial product, though a few prototypes have been built.

    That kind of guidebook to the process “just doesn’t exist,” Brennan says. She adds that “a lot of the technology development for hydrogen is either done in simulation or is still in the prototype stages, because developing it is expensive, and it’s difficult to test these kinds of systems.” One of the team’s goals for the project is to make everything available as an open-source design, and “we want to provide this bike as a platform for researchers and for education, where researchers can test ideas in both space- and funding-constrained environments.”

    Unlike a design built as a commercial product, Mehrotra says, “our vehicle is fully designed for research, so you can swap components in and out, and get real hardware data on how good your designs are.” That can help people work on implementing their new design ideas and help push the industry forward, he says.

    The few prototypes developed previously by some companies were inefficient and expensive, he says. “So far as we know, we are the first fully open-source, rigorously documented, tested and released-as-a-platform, [fuel cell] motorcycle in the world. No one else has made a motorcycle and tested it to the level that we have, and documented to the point that someone might actually be able to take this and scale it in the future, or use it in research.”

    He adds that “at the moment, this vehicle is affordable for research, but it’s not affordable yet for commercial production because the fuel cell is a very big, expensive component.” Doosan Fuel Cell, which provided the fuel cell for the prototype bike, produces relatively small and lightweight fuel cells mostly for use in drones. The company also produces hydrogen storage and delivery systems.

    The project will continue to evolve, says team member Annika Marschner, a sophomore in mechanical engineering. “It’s sort of an ongoing thing, and as we develop it and make changes, make it a stronger, better bike, it will just continue to grow over the years, hopefully,” she says.

    While the Electric Vehicle Team has until now focused on battery-powered vehicles, Marschner says, “Right now we’re looking at hydrogen because it seems like something that’s been less explored than other technologies for making sustainable transportation. So, it seemed like an exciting thing for us to offer our time and effort to.”

    Making it all work has been a long process. The team is using a frame from a 1999 motorcycle, with many custom-made parts added to support the electric motor, the hydrogen tank, the fuel cell, and the drive train. “Making everything fit in the frame of the bike is definitely something we’ve had to think about a lot because there’s such limited space there. So, it required trying to figure out how to mount things in clever ways so that there are not conflicts,” she says.

    Marschner says, “A lot of people don’t really imagine hydrogen energy being something that’s out there being used on the roads, but the technology does exist.” She points out that Toyota and Hyundai have hydrogen-fueled vehicles on the market, and that some hydrogen fuel stations exist, mostly in California, Japan, and some European countries. But getting access to hydrogen, “for your average consumer on the East Coast, is a huge, huge challenge. Infrastructure is definitely the biggest challenge right now to hydrogen vehicles,” she says.

    She sees a bright future for hydrogen as a clean fuel to replace fossil fuels over time. “I think it has a huge amount of potential,” she says. “I think one of the biggest challenges with moving hydrogen energy forward is getting these demonstration projects actually developed and showing that these things can work and that they can work well. So, we’re really excited to bring it along further.” More

  • in

    Making nuclear energy facilities easier to build and transport

    For the United States to meet its net zero goals, nuclear energy needs to be on the smorgasbord of options. The problem: Its production still suffers from a lack of scale. To increase access rapidly, we need to stand up reactors quickly, says Isabel Naranjo De Candido, a third-year doctoral student advised by Professor Koroush Shirvan.

    One option is to work with microreactors, transportable units that can be wheeled to areas that need clean electricity. Naranjo De Candido’s master’s thesis at MIT, supervised by Professor Jacopo Buongiorno, focused on such reactors.

    Another way to improve access to nuclear energy is to develop reactors that are modular so their component units can be manufactured quickly while still maintaining quality. “The idea is that you apply the industrialization techniques of manufacturing so companies produce more [nuclear] vessels, with a more predictable supply chain,” she says. The assumption is that working with standardized recipes to manufacture just a few designed components over and over again improves speed and reliability and decreases cost.

    As part of her doctoral studies, Naranjo De Candido is working on optimizing the operations and management of these small, modular reactors so they can be efficient in all stages of their lifecycle: building; operations and maintenance; and decommissioning. The motivation for her research is simple: “We need nuclear for climate change because we need a reliable and stable source of energy to fight climate change,” she says.

    Play video

    A childhood in Italy

    Despite her passion for nuclear energy and engineering today, Naranjo De Candido was unsure what she wanted to pursue after high school in Padua, Italy. The daughter of a physician Italian mother and an architect Spanish father, she enrolled in a science-based high school shortly after middle school, as she knew that was the track she enjoyed best.

    Having earned very high marks in school, she won a full scholarship to study in Pisa, at the special Sant’Anna School of Advanced Studies. Housed in a centuries-old convent, the school granted only masters and doctoral degrees. “I had to select what to study but I was unsure. I knew I was interested in engineering,” she recalls, “so I selected mechanical engineering because it’s more generic.”

    It turns out Sant’Anna was a perfect fit for Naranjo De Candido to explore her passions. An inspirational nuclear engineering course during her studies set her on the path toward studying the field as part of her master’s studies in Pisa. During her time there, she traveled around the world — to China as part of a student exchange program and to Switzerland and the United States for internships. “I formed a good background and curriculum and that allowed me to [gain admission] to MIT,” she says.

    At an internship at NASA’s Jet Propulsion Lab, she met an MIT mechanical engineering student who encouraged her to apply to the school for doctoral studies. Yet another mentor in the Italian nuclear sector had also suggested she apply to MIT to pursue nuclear engineering, so she decided to take the leap.

    And she is glad she did.

    Improving access to nuclear energy

    At MIT, Naranjo De Candido is working on improving access to nuclear energy by scaling down reactor size and, in the case of microreactors, making them mobile enough to travel to places where they’re needed. “The idea with a microreactor is that when the fuel is exhausted, you replace the entire microreactor onsite with a freshly fueled unit and take the old one back to a central facility where it’s going to be refueled,” she says. One of the early use cases for such microreactors has been remote mining sites which need reliable power 24/7.

    Modular reactors, about 10 times the size of microreactors, ensure access differently: The components can be manufactured and installed at scale. These reactors don’t just deliver electricity but also cater to the market for industrial heat, she says. “You can locate them close to industrial facilities and use the heat directly to power ammonia or hydrogen production or water desalinization for example,” she adds.

    As more of these modular reactors are installed, the industry is expected to expand to include enterprises that choose to simply build them and hand off operations to other companies. Whereas traditional nuclear energy reactors might have a full suite of staff on board, smaller-scale reactors such as modular ones cannot afford to staff in large numbers, so talent needs to be optimized and staff shared among many units. “Many of these companies are very interested in knowing exactly how many people and how much money to allocate, and how to organize resources to serve more than one reactor at the same time,” she says.

    Naranjo De Candido is working on a complex software program that factors in a large range of variables — from raw materials cost and worker training, reactor size, megawatt output and more — and leans on historical data to predict what resources newer plants might need. The program also informs operators about the tradeoffs they need to accept. For example, she explains, “if you reduce people below the typical level assigned, how does that impact the reliability of the plant, that is, the number of hours that it is able to operate without malfunctions and failures?”

    And managing and operating a nuclear reactor is particularly complex because safety standards limit how much time workers can work in certain areas and how safe zones need to be handled.

    “There’s a shortage of [qualified talent] in the industry so this is not just about reducing costs but also about making it possible to have plants out there,” Naranjo De Candido says. Different types of talent are needed, from professionals who specialize in mechanical components to electronic controls. The model that she is working on considers the need for such specialized skillsets as well as making room for cross-training talent in multiple fields as needed.

    In keeping with her goal of making nuclear energy more accessible, the optimization software will be open-source, available for all to use. “We want this to be a common ground for utilities and vendors and other players to be able to communicate better,” Naranjo De Candido says, Doing so will accelerate the operation of nuclear energy plants at scale, she hopes — an achievement that will come not a moment too soon. More

  • in

    New study shows how universities are critical to emerging fusion industry

    A new study suggests that universities have an essential role to fulfill in the continued growth and success of any modern high-tech industry, and especially the nascent fusion industry; however, the importance of that role is not reflected in the number of fusion-oriented faculty and educational channels currently available. Academia’s responsiveness to the birth of other modern scientific fields, such as aeronautics and nuclear fission, provides a template for the steps universities can take to enable a robust fusion industry.

    Authored by Dennis Whyte, the Hitachi America Professor of Engineering and director of the Plasma Science and Fusion Center at MIT; Carlos Paz-Soldan, associate professor of applied physics and applied mathematics at Columbia University; and Brian D. Wirth, the Governor’s Chair Professor of Computational Nuclear Engineering at the University of Tennessee, the paper was recently published in the journal Physics of Plasmas as part of a special collection titled “Private Fusion Research: Opportunities and Challenges in Plasma Science.”

    With contributions from authors in academia, government, and private industry, the collection outlines a framework for public-private partnerships that will be essential for the success of the fusion industry.

    Now being seen as a potential source of unlimited green energy, fusion is the same process that powers the sun — hydrogen atoms combine to form helium, releasing vast amounts of clean energy in the form of light and heat.

    The excitement surrounding fusion’s arrival has resulted in the proliferation of dozens of for-profit companies positioning themselves at the forefront of the commercial fusion energy industry. In the near future, those companies will require a significant network of fusion-fluent workers to take on varied tasks requiring a range of skills.

    While the authors acknowledge the role of private industry, especially as an increasingly dominant source of research funding, they also show that academia is and will continue to be critical to industry’s development, and it cannot be decoupled from private industry’s growth. Despite the evidence of this burgeoning interest, the size and scale of the field’s academic network at U.S.-based universities is sparse.

    According to Whyte, “Diversifying the [fusion] field by adding more tracks for master’s students and undergraduates who can transition into industry more quickly is an important step.”

    An analysis found that while there are 57 universities in the United States active in plasma and fusion research, the average number of tenured or tenure-track plasma/fusion faculty at each institution is only two. By comparison, a sampling of US News and World Report’s top 10 programs for nuclear fission and aeronautics/astronautics found an average of nearly 20 faculty devoted to fission and 32 to aero/astro.

    “University programs in fusion and their sponsors need to up their game and hire additional faculty if they want to provide the necessary workforce to support a growing U.S. fusion industry,” adds Paz-Soldan.

    The growth and proliferation of those fields and others, such as computing and biotechnology, were historically in lockstep with the creation of academic programs that helped drive the fields’ progress and widespread acceptance. Creating a similar path for fusion is essential to ensuring its sustainable growth, and as Wirth notes, “that this growth should be pursued in a way that is interdisciplinary across numerous engineering and science disciplines.”

    At MIT, an example of that path is seen at the Plasma Science and Fusion Center.

    The center has deep historical ties to government research programs, and the largest fusion company in the world, Commonwealth Fusion Systems (CFS), was spun out of the PSFC by Whyte’s former students and an MIT postdoc. Whyte also serves as the primary investigator in collaborative research with CFS on SPARC, a proof-of-concept fusion platform for advancing tokamak science that is scheduled for completion in 2025.

    “Public and private roles in the fusion community are rapidly evolving in response to the growth of privately funded commercial product development,” says Michael Segal, head of open innovation at CFS. “The fusion industry will increasingly rely on its university partners to train students, work across diverse disciplines, and execute small and midsize programs at speed.”

    According to the authors, another key reason academia will remain essential to the continued growth and development of fusion is because it is unconflicted. Whyte comments, “Our mandate is sharing information and education, which means we have no competitive conflict and innovation can flow freely.” Furthermore, fusion science is inherently multidisciplinary: “[It] requires physicists, computer scientists, engineers, chemists, etc. and it’s easy to tap into all those disciplines in an academic environment where they’re all naturally rubbing elbows and collaborating.”

    Creating a new energy industry, however, will also require a workforce skilled in disciplines other than STEM, say the authors. As fusion companies continue to grow, they will need expertise in finance, safety, licensing, and market analysis. Any successful fusion enterprise will also have major geopolitical, societal, and economic impacts, all of which must be managed.

    Ultimately, there are several steps the authors identify to help build the connections between academia and industry that will be important going forward: The first is for universities to acknowledge the rapidly changing fusion landscape and begin to adapt. “Universities need to embrace the growth of the private sector in fusion, recognize the opportunities it provides, and seek out mutually beneficial partnerships,” says Paz-Soldan.

    The second step is to reconcile the mission of educational institutions — unconflicted open access — with condensed timelines and proprietary outputs that come with private partnerships. At the same time, the authors note that private fusion companies should embrace the transparency of academia by publishing and sharing the findings they can through peer-reviewed journals, which will be a necessary part of building the industry’s credibility.

    The last step, the authors say, is for universities to become more flexible and creative in their technology licensing strategies to ensure ideas and innovations find their way from the lab into industry.

    “As an industry, we’re in a unique position because everything is brand new,” Whyte says. “But we’re enough students of history that we can see what’s needed to succeed; quantifying the status of the private and academic landscape is an important strategic touchstone. By drawing attention to the current trajectory, hopefully we’ll be in a better position to work with our colleagues in the public and private sector and make better-informed choices about how to proceed.” More

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    Smart irrigation technology covers “more crop per drop”

    In agriculture today, robots and drones can monitor fields, temperature and moisture sensors can be automated to meet crop needs, and a host of other systems and devices make farms more efficient, resource-conscious, and profitable. The use of precision agriculture, as these technologies are collectively known, offers significant advantages. However, because the technology can be costly, it remains out of reach for the majority of the world’s farmers.

    “Many of the poor around the world are small, subsistence farmers,” says Susan Amrose, research scientist with the Global Engineering and Research (GEAR) Lab at MIT. “With intensification of food production needs, worsening soil, water scarcity, and smaller plots, these farmers can’t continue with their current practices.”

    By some estimates, the global demand for fresh water will outstrip supply by as much as 40 percent by the end of the decade. Nearly 80 percent of the world’s 570 million farms are classed as smallholder farms, with many located in under-resourced and water-stressed regions. With rapid population growth and climate change driving up demand for food, and with more strain on natural resources, increasing the adoption of sustainable agricultural practices among smallholder farmers is vital. 

    Amrose, who helps lead desalination, drip irrigation, water, and sanitation projects for GEAR Lab, says these small farmers need to move to more mechanized practices. “We’re trying to make it much, much more affordable for farmers to utilize solar-powered irrigation, and to have access to tools that, right now, they’re priced out of,” she says. “More crop per drop, more crop per area, that’s our goal.”

    Play video

    No Drop to Spare: MIT creates affordable, user-driven smart irrigation technology | MIT Mechanical Engineering

    Drip irrigation systems release water and nutrients in controlled volumes directly to the root zone of the crop through a network of pipes and emitters. These systems can reduce water consumption by 20 to 60 percent when compared to conventional flood irrigation methods.

    “Agriculture uses 70 percent of the fresh water that’s in use across the globe. Large-scale adoption and correct management of drip irrigation could help to reduce consumption of fresh water, which is especially critical for regions experiencing water shortages or groundwater depletion,” says Carolyn Sheline SM ’19, a PhD student and member of the GEAR Lab’s Drip Irrigation team. “A lot of irrigation technology is developed for larger farms that can put more money into it — but inexpensive doesn’t need to mean ‘not technologically advanced.’”

    GEAR Lab has created several drip irrigation technology solutions to date, including a low-pressure drip emitter that has been shown to reduce pumping energy by more than 50 percent when compared to existing emitters; a systems-level optimization model that analyzes factors like local weather conditions and crop layouts, to cut overall system operation costs by up to 30 percent; and a low-cost precision irrigation controller that optimizes system energy and water use, enabling farmers to operate the system on an ideal schedule given their specific resources, needs, and preferences. The controller has recently been shown to reduce water consumption by over 40 percent when compared to traditional practices.

    To build these new, affordable technologies, the team tapped into a critical knowledge source — the farmers themselves.

    “We didn’t just create technology in isolation — we also advanced our understanding of how people would interact with and value this technology, and we did that before the technology had come to fruition,” says Amos Winter SM ’05, PhD ’11, associate professor of mechanical engineering and MIT GEAR Lab principal investigator. “Getting affirmations that farmers would value what the technology would do before we finished it was incredibly important.”

    The team held “Farmer Field Days” and conducted interviews with more than 200 farmers, suppliers, and industry professionals in Kenya, Morocco, and Jordan, the regions selected to host field pilot test sites. These specific sites were selected for a variety of reasons, including solar availability and water scarcity, and because all were great candidate markets for eventual adoption of the technology.

    “People usually understand their own problems really well, and they’re very good at coming up with solutions to them,” says Fiona Grant ’17, SM ’19, also a PhD candidate with the GEAR Lab Drip Irrigation team. “As designers, our role really is to provide a different set of expertise and another avenue for them to get the tools or the resources that they need.”

    The controller, for example, takes in weather information, like relative humidity, temperature, wind speed values, and precipitation. Then, using artificial intelligence, it calculates and predicts the area’s solar exposure for the day and the exact irrigation needs for the farmer, and sends information to their smartphone. How much, or how little, automation an individual site uses remains up to the farmer. In its first season of operation on a Moroccan test site, GEAR Lab technology reduced water consumption by 44 percent and energy by 38 percent when compared to a neighboring farm using traditional drip irrigation practice.

    “The way you’re going to operate a system is going to have a big impact on the way you design it,” says Grant. “We gained a sense of what farmers would be willing to change, or not, regarding interactions with the system. We found that what we might change, and what would be acceptable to change, were not necessarily the same thing.”

    GEAR Lab alumna Georgia Van de Zande ’15, SM ’18, PhD ’23, concurs. “It’s about more than just delivering a lower-cost system, it’s also about creating something they’re going to want to use and want to trust.”

    In Jordan, researchers at a full-scale test farm are operating a solar-powered drip system with a prototype of the controller and are receiving smartphone commands on when to open and close the manual valves. In Morocco, the controller is operating at a research farm with a fully automated hydraulic system; researchers are monitoring the irrigation and conducting additional agronomic tasks. In Kenya, where precision agriculture and smart irrigation haven’t yet seen very much adoption, a simpler version of the controller serves to provide educational and training information in addition to offering scheduling and control capabilities.

    Knowledge is power for the farmers, and for designers and engineers, too. If an engineer can know a user’s requirements, Winter says, they’re much more likely to create a successful solution.

    “The most powerful tool a designer can have is perspective. I have one perspective — the math and science and tech innovation side — but I don’t know a thing about what it’s like to live every day as a farmer in Jordan or Morocco,” says Winter. “I don’t know what clogs the filters, or who shuts off the water. If you can see the world through the eyes of stakeholders, you’re going to spot requirements and constraints that you wouldn’t have picked up on otherwise.”

    Winter says the technology his team is building is exciting for a lot of reasons.

    “To be in a situation where the world is saying, ‘we need to deal with water stress, we need to deal with climate adaptation, and we need to particularly do this in resource-constrained countries,’ and to be in a position where we can do something about it and produce something of tremendous value and efficacy is incredible,” says Winter. “Solving the right problem at the right time, on a massive scale, is thrilling.” More