in

Food–energy–water implications of negative emissions technologies in a +1.5 °C future

[adace-ad id="91168"]
  • 1.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  • 2.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • 3.

    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • 4.

    Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).

    CAS  Google Scholar 

  • 5.

    Fawcett, A. A. et al. Can Paris pledges avert severe climate change? Science 350, 1168–1169 (2015).

    CAS  Google Scholar 

  • 6.

    Emissions Gap Report 2019 (UNEP, 2019).

  • 7.

    Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  • 8.

    Lawrence, B. M. G. & Schäfer, S. Promises and perils of the Paris Agreement. Science 364, 829–830 (2019).

    CAS  Google Scholar 

  • 9.

    Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–184 (2016).

    CAS  Google Scholar 

  • 10.

    NRC Negative Emissions Technologies and Reliable Sequestration (National Academies of Sciences, Engineering, and Medicine, 2018).

  • 11.

    NRC Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Research Council, 2015).

  • 12.

    Minx, J. C. et al. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Google Scholar 

  • 13.

    Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Google Scholar 

  • 14.

    Nemet, G. F. et al. Negative emissions—part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).

    Google Scholar 

  • 15.

    Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Google Scholar 

  • 16.

    Fuhrman, J., McJeon, H., Doney, S. C., Shobe, W. & Clarens, A. F. From zero to hero?: Why integrated assessment modeling of negative emissions technologies is hard and how we can do better. Front. Clim. 1, 11 (2019).

    Google Scholar 

  • 17.

    Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    CAS  Google Scholar 

  • 18.

    Calvin, K. et al. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Clim. Change 123, 691–704 (2014).

    Google Scholar 

  • 19.

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    CAS  Google Scholar 

  • 20.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    CAS  Google Scholar 

  • 21.

    Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014).

    Google Scholar 

  • 22.

    Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    CAS  Google Scholar 

  • 23.

    Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    CAS  Google Scholar 

  • 24.

    Direct Air Capture of CO 2with Chemicals: a Technology Assessment for the APS Panel on Public Affairs (American Physical Society, 2011).

  • 25.

    Carbon engineering’s large-scale direct air capture breakthrough. Carbon Engineering (7 June 2018); https://carbonengineering.com/news-updates/climate-change-breakthrough/

  • 26.

    Simon, E. The Swiss company hoping to capture 1% of global CO2 emissions by 2025. Carbon Brief (22 June 2017); https://www.carbonbrief.org/swiss-company-hoping-capture-1-global-co2-emissions-2025

  • 27.

    Peters, A. Can we suck enough CO2 from the air to save the climate? Global Thermostat (22 December 2017); https://globalthermostat.com/2017/12/global-thermostat-news-fastcompany-com-published-122217/

  • 28.

    Chevron, occidental invest in CO2 removal technology. Reuters (9 January 2019); https://www.reuters.com/article/us-carbonengineering-investment/chevron-occidental-invest-in-co2-removal-technology-idUSKCN1P312R

  • 29.

    ExxonMobil and Global Thermostat to advance breakthrough atmospheric carbon capture technology. Business Wire (27 June 2019); https://www.businesswire.com/news/home/20190627005137/en/ExxonMobil-Global-Thermostat-Advance-Breakthrough-Atmospheric-Carbon

  • 30.

    Marcucci, A., Kypreos, S. & Panos, E. The road to achieving the long-term Paris targets: energy transition and the role of direct air capture. Climatic Change 144, 181–193 (2017).

    Google Scholar 

  • 31.

    Strefler, J. et al. Between Scylla and Charybdis: delayed mitigation narrows the passage between large-scale CDR and high costs. Environ. Res. Lett. 13, 044015 (2018).

    Google Scholar 

  • 32.

    Chen, C. & Tavoni, M. Direct air capture of CO2 and climate stabilization: a model based assessment. Climatic Change 118, 59–72 (2013).

    CAS  Google Scholar 

  • 33.

    Holz, C., Siegel, L. S., Johnston, E., Jones, A. P. & Sterman, J. Ratcheting ambition to limit warming to 1.5 °C—trade-offs between emission reductions and carbon dioxide removal. Environ. Res. Lett. 13, 64028 (2018).

    Google Scholar 

  • 34.

    Keith, D. W., Ha-Duong, M. & Stolaroff, J. K. Climate strategy with CO2 capture from the air. Climatic Change 74, 17–45 (2006).

    CAS  Google Scholar 

  • 35.

    Honegger, M. & Reiner, D. The political economy of negative emissions technologies: consequences for international policy design. Clim. Policy 18, 306–321 (2018).

    Google Scholar 

  • 36.

    Bednar, J., Obersteiner, M. & Wagner, F. On the financial viability of negative emissions. Nat. Commun. 10, 1783 (2019).

    Google Scholar 

  • 37.

    Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2013).

    Google Scholar 

  • 38.

    Fricko, O. et al. Energy sector water use implications of a 2 °C climate policy. Environ. Res. Lett. 11, 034011 (2016).

    Google Scholar 

  • 39.

    Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

    CAS  Google Scholar 

  • 40.

    BP Statistical Review of World Energy (BP, 2019).

  • 41.

    New map of worldwide croplands supports food and water security. Global food security-support analysis data at 30 m. USGS (14 November 2017); https://www.usgs.gov/news/new-map-worldwide-croplands-supports-food-and-water-security

  • 42.

    Huppmann, D. et al. IAMC 1.5 °C scenario explorer and data. IIASA https://doi.org/10.22022/SR15/08-2018.15429 (2018)

  • 43.

    Hoff, H. et al. Greening the global water system. J. Hydrol. 384, 177–186 (2010).

    Google Scholar 

  • 44.

    Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 1389–1426 (2017).

    CAS  Google Scholar 

  • 45.

    Ng, T. L., Eheart, J. W., Cai, X. & Miguez, F. Modeling miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ. Sci. Technol. 44, 7138–7144 (2010).

    CAS  Google Scholar 

  • 46.

    Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    CAS  Google Scholar 

  • 47.

    Arnell, N. W., Lowe, J. A., Challinor, A. J. & Osborn, T. J. Global and regional impacts of climate change at different levels of global temperature increase. Climatic Change 155, 377–391 (2019).

    Google Scholar 

  • 48.

    Calvin, K. et al. Global market and economic welfare implications of changes in agricultural yields due to climate change. Clim. Change Econ. 11, 2050005 (2020).

    Google Scholar 

  • 49.

    Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    CAS  Google Scholar 

  • 50.

    Snyder, A., Calvin, K., Phillips, M. & Ruane, A. A crop yield change emulator for use in GCAM and similar models: Persephone v1.0. Geosci. Model Dev. 12, 1319–1350 (2019).

    Google Scholar 

  • 51.

    McLaren, D. & Markusson, N. The co-evolution of technological promises, modelling, policies and climate change targets. Nat. Clim. Change 10, 392–397 (2020).

    Google Scholar 

  • 52.

    Alvarez, R. A. et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188 (2018).

    CAS  Google Scholar 

  • 53.

    Chu, E., Anguelovski, I. & Carmin, J. A. Inclusive approaches to urban climate adaptation planning and implementation in the Global South. Clim. Policy 16, 372–392 (2016).

    Google Scholar 

  • 54.

    Füssel, H. M. How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: a comprehensive indicator-based assessment. Glob. Environ. Change 20, 597–611 (2010).

    Google Scholar 

  • 55.

    Fuhrman, J. Replication Data for “Food Energy Water Tradeoffs of Negative Emissions Technologies in a + 1.5C Future” v1 (University of Virginia Dataverse, 2020); https://doi.org/10.18130/V3/JKJAOG

  • 56.

    Peters, G. P. et al. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change 10, 3–6 (2020).

    Google Scholar 

  • 57.

    Mauna Loa CO 2Annual Mean Data (NOAA Global Monitoring Laboratory, 2019); https://www.esrl.noaa.gov/gmd/ccgg/trends/

  • 58.

    Global Average Near Surface Temperatures Relative to the Pre-Industrial Period (European Environment Agency, 2019; https://www.eea.europa.eu/data-and-maps/daviz/global-average-air-temperature-anomalies-5#tab-dashboard-02

  • 59.

    Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Google Scholar 

  • 60.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • 61.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Google Scholar 

  • 62.

    Zeman, F. Energy and material balance of CO2 capture from ambient air. Environ. Sci. Technol. 41, 7558–7563 (2007).

    CAS  Google Scholar 

  • 63.

    Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42, 2728–2735 (2008).

    CAS  Google Scholar 

  • 64.

    Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).

    CAS  Google Scholar 

  • 65.

    Net Zero Technical Report 282, Fig. 10.2 (Committee on Climate Change, 2019).

  • 66.

    Mazzotti, M., Baciocchi, R., Desmond, M. J. & Socolow, R. H. Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air–liquid contactor. Climatic Change 118, 119–135 (2013).

    CAS  Google Scholar 

  • 67.

    GCAM v5.2 Documentation: GCAM Energy System (JGCRI, 2020).

  • 68.

    GCAM v5.2 Documentation: Table of Contents (JGCRI, 2019). https://jgcri.github.io/gcam-doc/toc.html


  • Source: Resources - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes