in

Increasing threat of coastal groundwater hazards from sea-level rise in California

[adace-ad id="91168"]
  • 1.

    Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

    CAS  Google Scholar 

  • 2.

    Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 166, 11195–11200 (2019).

    Google Scholar 

  • 3.

    Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: the DIVA wetland change model. Glob. Planet. Change 139, 15–30 (2016).

    Google Scholar 

  • 4.

    Moftakhari, H. R. et al. Increased nuisance flooding due to sea-level rise: past and future. Geophys. Res. Lett. 42, 9846–9852 (2015).

    Google Scholar 

  • 5.

    Vitousek, S. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

    Google Scholar 

  • 6.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2013).

  • 7.

    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Google Scholar 

  • 8.

    Diaz, D. B. Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM). Clim. Change 137, 143–156 (2016).

    Google Scholar 

  • 9.

    Barnard, P. L. et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 9, 4309 (2019).

    Google Scholar 

  • 10.

    Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).

    Google Scholar 

  • 11.

    Webb, M. D. & Howard, K. W. F. Modeling the transient response of saline intrusion to rising sea-levels. Ground Water 49, 560–569 (2011).

    CAS  Google Scholar 

  • 12.

    Werner, A. D. & Simmons, C. T. Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47, 197–204 (2009).

    CAS  Google Scholar 

  • 13.

    Michael, H. A., Russoniello, C. J. & Byron, L. A. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. Water Resour. Res. 49, 2228–2240 (2013).

    Google Scholar 

  • 14.

    Masterson, J. P. et al. Effects of sea-level rise on barrier island groundwater system dynamics—ecohydrological implications. Ecohydrology 7, 1064–1071 (2014).

    Google Scholar 

  • 15.

    Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Google Scholar 

  • 16.

    Hummel, M. A., Berry, M. S. & Stacey, M. T. Sea level rise impacts on wastewater treatment systems along the U.S. coasts. Earth’s Future 6, 622–633 (2018).

    Google Scholar 

  • 17.

    Liu, T., Su, X. & Prigiobbe, V. Groundwater–sewer interaction in urban coastal areas. Water 10, 1774 (2018).

    CAS  Google Scholar 

  • 18.

    Knott, J. F., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Adaptation planning to mitigate coastal-road pavement damage from groundwater rise caused by sea-level rise. Transp. Res. Rec. 2672, 11–22 (2018).

    Google Scholar 

  • 19.

    Myers, N. Environmental refugees: a growing phenomenon of the 21st century. Phil. Trans. R. Soc. Lond. B 357, 609–613 (2002).

    Google Scholar 

  • 20.

    Nicholls, R. J. et al. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Phil. Trans. R. Soc. A 369, 161–181 (2011).

    Google Scholar 

  • 21.

    Abarca, E., Karam, H., Hemond, H. F. & Harvey, C. F. Transient groundwater dynamics in a coastal aquifer: the effects of tides, the lunar cycle and the beach profile. Water Resour. Res. 49, 2473–2488 (2013).

    Google Scholar 

  • 22.

    Nielsen, P. Tidal dynamics of the water table in beaches. Water Resour. Res. 26, 2127–2134 (1990).

    Google Scholar 

  • 23.

    Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B. & Simmons, C. T. Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J. Hydrol. 535, 235–255 (2016).

    Google Scholar 

  • 24.

    Masterson, J. P. & Garabedian, S. P. Effects of sea-level rise on ground water flow in a coastal aquifer system. Ground Water 45, 209–217 (2007).

    CAS  Google Scholar 

  • 25.

    Werner, A. D. et al. Vulnerability indicators of sea water intrusion. Ground Water 50, 48–58 (2012).

    CAS  Google Scholar 

  • 26.

    Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S. & Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3–33 (2003).

    CAS  Google Scholar 

  • 27.

    Hoover, D. J., Odigie, K. O., Swarzenski, P. W. & Barnard, P. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA. J. Hydrol. Reg. Stud. 11, 234–249 (2017).

    Google Scholar 

  • 28.

    Plane, E., Hill, K. & May, C. A rapid assessment method to identify potential groundwater flooding hotspots as sea levels rise in coastal cities. Water 11, 2228 (2019).

    CAS  Google Scholar 

  • 29.

    Lu, C., Werner, A. D. & Simmons, C. T. Threats to coastal aquifers. Nat. Clim. Change 3, 605 (2013).

    Google Scholar 

  • 30.

    Harbaugh, A. W. MODFLOW-2005: The U.S. Geological Survey Modular Ground-Water Model—the Ground-Water Flow Process Techniques and Methods No. 6-A16 (US Geological Survey, 2005).

  • 31.

    Topologically Integrated Geographic Encoding and Referencing (TIGER) Database (US Census Bureau, 2016).

  • 32.

    Gleeson, T., Moosdorf, N., Hartmann, J. & van Beek, L. P. H. A glimpse beneath Earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).

    Google Scholar 

  • 33.

    Glover, R. E. The pattern of fresh-water flow in a coastal aquifer. J. Geophys. Res. 64, 457–459 (1959).

    Google Scholar 

  • 34.

    Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).

    Google Scholar 

  • 35.

    Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States Technical Report NOS CO-OPS (NOAA, 2017).

  • 36.

    State of California Sea-Level Rise Guidance—2018 Update (California Ocean Protection Council, 2018).

  • 37.

    Duvall, A., Kirby, E. & Burbank, D. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. J. Geophys. Res. 109, F03002 (2004).

    Google Scholar 

  • 38.

    Vitousek, S., Barnard, P. L., Limber, P., Erikson, L. & Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 122, 782–806 (2017).

    Google Scholar 

  • 39.

    Erikson, L. H., O’Neill, A., Barnard, P. L., Vitousek, S. & Limber, P. Climate change-driven cliff and beach evolution at decadal to centennial time scales. In Proc. Coastal Dynamics 2017 (eds Aagaard, T. et al.) 125–136 (2017).

  • 40.

    Limber, P. W., Barnard, P. L., Vitousek, S. & Erikson, L. H. A model ensemble for projecting multidecadal coastal cliff retreat during the 21st century. J. Geophys. Res. Earth Surf. 123, 1566–1589 (2018).

    Google Scholar 

  • 41.

    Knott, J. F., Elshaer, M., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639, 1–10 (2017).

    Google Scholar 

  • 42.

    Habel, S., Fletcher, C. H., Rotzoll, K. & El-Kadi, A. I. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res. 114, 122–134 (2017).

    CAS  Google Scholar 

  • 43.

    Hughes, J. D. & White, J. T. Hydrologic Conditions in Urban Miami-Dade County, Florida, and the Effect of Groundwater Pumpage and Increased Sea Level on Canal Leakage and Regional Groundwater Flow Scientific Investigations Report No. 2014–5162 (US Geological Survey, 2014).

  • 44.

    Guha, H. & Panday, S. Impact of sea level rise on groundwater salinity in a coastal community of South Florida. J. Am. Water Resour. Assoc. 48, 510–529 (2012).

    Google Scholar 

  • 45.

    Sukop, M. C., Rogers, M., Guannel, G., Infanti, J. M. & Hagemann, K. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA. Sci. Total Environ. 616–617, 1668–1688 (2018).

    Google Scholar 

  • 46.

    Bakker, M. et al. Scripting MODFLOW model development using Python and FloPy. Groundwater 54, 733–739 (2016).

    CAS  Google Scholar 

  • 47.

    Reitz, M., Sanford, W. E., Senay, G. B. & Cazenas, J. Annual Estimates of Recharge, Quick-Flow Runoff, and ET for the Contiguous US Using Empirical Regression Equations, 2000–2013 (US Geological Survey, 2017).

  • 48.

    Reitz, M., Sanford, W. E., Senay, G. B. & Cazenas, J. Annual estimates of recharge, quick-flow runoff, and evapotranspiration for the contiguous U.S. using empirical regression equations. J. Am. Water Resour. Assoc. 53, 961–983 (2017).

    Google Scholar 

  • 49.

    Hanson, R. T., Martin, P. & Koczot, K. M. Simulation of Ground-Water/Surface-Water Flow in the Santa Clara-Calleguas Ground-Water Basin, Ventura County, California Water-Resources Investigations Report No. 2002-4136 (US Geological Survey, 2003).

  • 50.

    Hanson, R. T., Schmid, W., Faunt, C. C., Lear, J. & Lockwood, B. Integrated Hydrologic Model of Pajaro Valley, Santa Cruz and Monterey Counties, California Scientific Investigations Report No. 2014-5111 (US Geological Survey, 2014).

  • 51.

    Reichard, E. G. et al. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California Water-Resources Investigations Report No. 03-4065 (US Geological Survey, 2003).

  • 52.

    Nishikawa, T. A Simulation-Optimization Model for Water-Resources Management, Santa Barbara, California Water-Resources Investigations Report No. 97-4246 (US Geological Survey, 1998).

  • 53.

    Farrar, C. D., Metzger, L. F., Nishikawa, T., Koczot, K. M. & Reichard, E. G. Geohydrological Characterization, Water-Chemistry, and Ground-Water Flow Simulation Model of the Sonoma Valley Area, Sonoma County, California Scientific Investigations Report No. 2006-5092 (US Geological Survey, 2006).

  • 54.

    Bright, D. J., Nash, D. B. & Martin, P. Evaluation of Ground-Water Flow and Solute Transport in the Lompoc Area, Santa Barbara County, California Water-Resources Investigations Report No. 97-4056 (US Geological Survey, 1997).

  • 55.

    Knott, J. F., Jacobs, J. M., Daniel, J. S. & Kirshen, P. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. J. Coast. Res. 35, 143–157 (2019).

    Google Scholar 

  • 56.

    Huscroft, J., Gleeson, T., Hartmann, J. & Börker, J. Compiling and mapping global permeability of the unconsolidated and consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0). Geophys. Res. Lett. 45, 1897–1904 (2018).

    Google Scholar 

  • 57.

    Gleeson, T. et al. Mapping permeability over the surface of the Earth. Geophys. Res. Lett. 38, L02401 (2011).

    Google Scholar 

  • 58.

    Zamrsky, D., Oude Essink, G. H. P. & Bierkens, M. F. P. Estimating the thickness of unconsolidated coastal aquifers along the global coastline. Earth Syst. Sci. Data 10, 1591–1603 (2018).

    Google Scholar 

  • 59.

    Tyler, D. J. & Danielson, J. J. Topobathymetric Model for the Southern Coast of California and the Channel Islands, 1930 to 2014 (US Geological Survey, 2018).

  • 60.

    Danielson, J. J. et al. Topobathymetric elevation model development using a new methodology: coastal national elevation. Database J. Coast. Res. 76, 75–89 (2016).

    Google Scholar 

  • 61.

    Tyler, D. J., Danielson, J. J., Poppenga, S. K. & Gesch, D. B. Topobathymetric Model for the Central Coast of California, 1929 to 2017 (US Geological Survey, 2018).

  • 62.

    Tarboton, D. G. Terrain Analysis Using Digital Elevation Models (TauDEM) (Utah State Univ., 2005).

  • 63.

    Estimation of Vertical Uncertainties in VDatum (National Oceanic and Atmospheric Administration, 2018).

  • 64.

    National Oceanic Data Center (Levitus) World Ocean Atlas (National Oceanic and Atmospheric Administration, 1994).

  • 65.

    Schraga, T. S. & Cloern, J. E. Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969-2015. Sci. Data 4, 170098 (2017).

    CAS  Google Scholar 

  • 66.

    Post, V., Kooi, H. & Simmons, C. Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45, 664–671 (2007).

    CAS  Google Scholar 

  • 67.

    Befus, K. M. kbefus/ca_gw_slr Zenodo https://doi.org/10.5281/zenodo. 3897502 (2020).

  • 68.

    Befus, K. M., Hoover, D., Barnard, P. L. & Erikson, L. H. California Coastal Groundwater Projected Response with Sea-Level Rise (US Geological Survey, 2020); https://doi.org/10.5066/P9H5PBXP

  • 69.

    Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi Hart, J. A. & Voss C. California saline groundwater wedge footprint model results. HydroShare https://doi.org/10.4211/hs.1c95059edcf041a0959e0b4a1f05478c (2020).

  • 70.

    Badon Ghyben, W. Nota in Verband Met de Voorgenomen Putboring Nabil Amsterdam. Tijdschr. K. Inst. Ing. 9, 8–22 (1888).

    Google Scholar 

  • 71.

    Herzberg, A. Die wasserversorgung einiger Nordseebader. J. Gasbeleucht. Wasserversorg. 44, 815–819 (1901).

    Google Scholar 

  • 72.

    Feistel, R. A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg−1. Deep Sea Res. I 55, 1639–1671 (2008).

    Google Scholar 

  • 73.

    Kuan, W. K. et al. Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resour. Res. 48, W02502 (2012).

    Google Scholar 

  • 74.

    Ataie-Ashtiani, B., Volker, R. E. & Lockington, D. A. Tidal effects on sea water intrusion in unconfined aquifers. J. Hydrol. 216, 17–31 (1999).

    Google Scholar 

  • 75.

    Pool, M., Post, V. E. A. & Simmons, C. T. Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers. Water Resour. Res. 51, 1570–1585 (2015).

    Google Scholar 

  • 76.

    Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Res. 51, 3–26 (2013).

    Google Scholar 

  • 77.

    Yu, X. & Michael, H. A. Mechanisms, configuration typology, and vulnerability of pumping-induced seawater intrusion in heterogeneous aquifers. Adv. Water Resour. 128, 117–128 (2019).

    Google Scholar 

  • 78.

    Strack, O. D. L. & Ausk, B. K. A formulation for vertically integrated groundwater flow in a stratified coastal aquifer. Water Resour. Res. 51, 6756–6775 (2015).

    Google Scholar 


  • Source: Resources - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial