More stories

  • in

    Intermittent meromixis controls the trophic state of warming deep lakes

    1.
    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here?. Trends Ecol. Evol. 24, 201–207 (2009).
    PubMed  Google Scholar 
    2.
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
    PubMed  Google Scholar 

    3.
    Carpenter, S. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).
    Google Scholar 

    4.
    Cohen, A. S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc. Natl. Acad. Sci. 113, 9563–9568 (2016).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Fernández, J. E., Peeters, F. & Hofmann, H. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ. Sci. Technol. 48, 7297–7304 (2014).
    ADS  Google Scholar 

    6.
    Friedrich, J. et al. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11, 1215–1259 (2014).
    ADS  Google Scholar 

    7.
    Vollenweider, R. A. Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication (Mem. dell’Istituto Ital. di Idrobiol. Dott, Marco Marchi Verbania Pallanza, 1976).
    Google Scholar 

    8.
    Jenny, J.-P. et al. Inherited hypoxia: a new challenge for reoligotrophicated lakes under global warming. Glob. Biogeochem. Cycles 28, 1413–1423 (2014).
    ADS  CAS  Google Scholar 

    9.
    Matzinger, A. et al. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol. Oceanogr. 52, 338–353 (2007).
    ADS  CAS  Google Scholar 

    10.
    Meire, L., Soetaert, K. E. R. & Meysman, F. J. R. Impact of global change on coastal oxygen dynamics and risk of hypoxia. Biogeosciences 10, 2633–2653 (2013).
    ADS  CAS  Google Scholar 

    11.
    Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

    12.
    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).
    ADS  Google Scholar 

    13.
    Schmid, M., Hunziker, S. & Wüest, A. Lake surface temperatures in a changing climate: a global sensitivity analysis. Clim. Change 124, 301–315 (2014).
    ADS  Google Scholar 

    14.
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
    CAS  Google Scholar 

    15.
    Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012).
    PubMed  Google Scholar 

    16.
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 

    17.
    Butcher, J. B., Nover, D., Johnson, T. E. & Clark, C. M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Change 129, 295–305 (2015).
    ADS  CAS  Google Scholar 

    18.
    Kirillin, G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ. Res. 15, 279–293 (2010).
    Google Scholar 

    19.
    Straile, D., Jöhnk, K. & Rossknecht, H. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol. Oceanogr. 48, 1432–1438 (2003).
    ADS  CAS  Google Scholar 

    20.
    Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019).
    ADS  CAS  Google Scholar 

    21.
    Boehrer, B., Fukuyama, R. & Chikita, K. Stratification of very deep, thermally stratified lakes. Geophys. Res. Lett. 35, 8–12 (2008).
    Google Scholar 

    22.
    Boehrer, B. & Schultze, M. Stratification of lakes. Rev. Geophys. 46, 1–27 (2008).
    Google Scholar 

    23.
    Boehrer, B., Rohden, C. Von & Schultze, M. Ecology of Meromictic Lakes. 228 (2017).

    24.
    Hall, K. J. & Northcote, T. G. Meromictic lakes. In Encyclopedia of Lakes and Reservoirs 519–524 (Springer, 2012).

    25.
    Søndergaard, M., Jensen, J. P. & Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509, 135–145 (2003).
    Google Scholar 

    26.
    Hupfer, M. & Lewandowski, J. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 93, 415–432 (2008).
    CAS  Google Scholar 

    27.
    Yankova, Y., Neuenschwander, S., Köster, O. & Posch, T. Abrupt stop of deep water turnover with lake warming: drastic consequences for algal primary producers. Sci. Rep. 7, 13770 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Lehmann, M. et al. Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Front. Earth Sci. 3, 45 (2015).
    ADS  Google Scholar 

    29.
    Anneville, O., Gammeter, S. & Straile, D. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw. Biol. 50, 1731–1746 (2005).
    CAS  Google Scholar 

    30.
    Posch, T., Köster, O., Salcher, M. M. & Pernthaler, J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2, 809 (2012).
    ADS  CAS  Google Scholar 

    31.
    Winder, M. Lake warming mimics fertilization. Nat. Clim. Change 2, 771 (2012).
    ADS  CAS  Google Scholar 

    32.
    Coats, R., Perez-Losada, J., Schladow, G., Richards, R. & Goldman, C. The warming of Lake Tahoe. Clim. Change 76, 121–148 (2006).
    ADS  Google Scholar 

    33.
    Kraemer, B. M. et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. 42, 4981–4988 (2015).
    ADS  Google Scholar 

    34.
    Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003).
    ADS  CAS  PubMed  Google Scholar 

    35.
    North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014).
    ADS  Google Scholar 

    36.
    Salmaso, N. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnol. Oceanogr. 50, 553–565 (2005).
    ADS  Google Scholar 

    37.
    Kõiv, T., Nõges, T. & Laas, A. Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660, 105–115 (2011).
    Google Scholar 

    38.
    Walker, K. F. & Likens, G. E. Meromixis and a reconsidered typology of lake circulation patterns. Int. Vereinigung für Theor. und Angew. Limnol. Verhandlungen 19, 442–458 (1975).
    Google Scholar 

    39.
    Rogora, M. et al. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia https://doi.org/10.1007/s10750-018-3623-y (2018).
    Article  Google Scholar 

    40.
    Valerio, G., Pilotti, M., Barontini, S. & Leoni, B. Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change. Hydrol. Process. 29, 767–779 (2015).
    ADS  Google Scholar 

    41.
    Rapuc, W. et al. Holocene-long record of flood frequency in the Southern Alps (Lake Iseo, Italy) under human and climate forcing. Glob. Planet. Change 175, 160–172 (2019).
    ADS  Google Scholar 

    42.
    Gächter, R. & Müller, B. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol. Oceanogr. 48, 929–933 (2003).
    ADS  Google Scholar 

    43.
    Katsev, S. & Dittrich, M. Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol. Model. 251, 246–259 (2013).
    CAS  Google Scholar 

    44.
    Garibaldi, L., Mezzanotte, V., Brizzio, M. C., Rogora, M. & Mosello, R. The trophic evolution of Lake Iseo as related to its holomixis. J. Limnol. 58, 10 (1999).
    Google Scholar 

    45.
    Leoni, B. et al. Long-term studies for evaluating the impacts of natural and anthropic stressors on limnological features and the ecosystem quality of Lake Iseo. Adv. Oceanogr. Limnol. https://doi.org/10.4081/aiol.2019.8622 (2019).
    Article  Google Scholar 

    46.
    Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008).
    CAS  Google Scholar 

    47.
    Pilotti, M., Valerio, G. & Leoni, B. Data set for hydrodynamic lake model calibration: a deep prealpine case. Water Resour. Res. 49, 7159–7163 (2013).
    ADS  Google Scholar 

    48.
    Hutchinson, G. E. Treatise on limnology; geography, physics of lakes. In Treatise on Limnology; Geography, Physics of Lakes (Wiley, New York, 1975).

    49.
    Livingstone, D. M. A change of climate provokes a change of paradigm: taking leave of two tacit assumptions about physical lake forcing. Int. Rev. Hydrobiol. 93, 404–414 (2008).
    Google Scholar 

    50.
    Livingstone, D. M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003).
    Google Scholar 

    51.
    Peeters, F., Livingstone, D. M., Goudsmit, G.-H., Kipfer, R. & Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 47, 186–197 (2002).
    ADS  Google Scholar 

    52.
    Foley, B., Jones, I. D., Maberly, S. C. & Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw. Biol. 57, 278–289 (2011).
    Google Scholar 

    53.
    Salmaso, N., Boscaini, A., Capelli, C. & Cerasino, L. Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda. Hydrobiologia 824, 177–195 (2018).
    CAS  Google Scholar 

    54.
    Vinçon-Leite, B., Lemaire, B. J., Khac, V. T. & Tassin, B. Long-term temperature evolution in a deep sub-alpine lake, Lake Bourget, France: how a one-dimensional model improves its trend assessment. Hydrobiologia 731, 49–64 (2014).
    Google Scholar 

    55.
    Livingstone, D. M. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. SIL Proc. 1922–2010(26), 822–828 (1997).
    Google Scholar 

    56.
    Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria—Daphnia magna interface: the role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).
    ADS  Google Scholar 

    57.
    Zadereev, E. S., Boehrer, B. & Gulati, R. D. Introduction: meromictic lakes, their terminology and geographic distribution. In: Ecology of Meromictic Lakes, Vol. 228, 1–11 (Springer, 2017).

    58.
    Bryhn, A. C., Girel, C., Paolini, G. & Jacquet, S. Predicting future effects from nutrient abatement and climate change on phosphorus concentrations in Lake Bourget, France. Ecol. Model. 221, 1440–1450 (2010).
    CAS  Google Scholar 

    59.
    Kourzeneva, E., Asensio, H., Martin, E. & Faroux, S. Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling. Tellus A Dyn. Meteorol. Oceanogr. 64, 15640 (2012).
    Google Scholar 

    60.
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).
    ADS  Google Scholar 

    61.
    Cael, B. B., Heathcote, A. J. & Seekell, D. A. The volume and mean depth of Earth’s lakes. Geophys. Res. Lett. 44, 209–218 (2017).
    ADS  Google Scholar 

    62.
    Brett, M. T. & Benjamin, M. M. A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw. Biol. 53, 194–211 (2007).
    Google Scholar 

    63.
    Bryhn, A. C. A morphometrically based method for predicting water layer boundaries in meromictic lakes. Hydrobiologia 636, 413–419 (2009).
    CAS  Google Scholar 

    64.
    Rempfer, J. et al. The effect of the exceptionally mild European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future?. Limnol. Oceanogr. 55, 2170–2180 (2010).
    ADS  CAS  Google Scholar 

    65.
    Jenny, J. P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Change Biol. 22, 1481–1489 (2016).
    ADS  Google Scholar 

    66.
    Kraemer, B. M., Mehner, T. & Adrian, R. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Sci. Rep. 7, 10762 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    67.
    Bonomi, G. & Gerletti, M. Lake Iseo: a first limnological survey (temperature, chemistry, plankton and benthos). Mem. 1st. Ital. Idrobiol. 22, 149–175 (1967).
    Google Scholar 

    68.
    Pilotti, M., Simoncelli, S. & Valerio, G. A simple approach to the evaluation of the actual water renewal time of natural stratified lakes. Water Resour. Res. 50, 2830–2849 (2014).
    ADS  Google Scholar 

    69.
    Ambrosetti, W. & Barbanti, L. Evolution towards meromixis of Lake Iseo (Northern Italy) as revealed by its stability trend. J. Limnol. 64, 1 (2005).
    Google Scholar 

    70.
    Hupfer, M., Reitzel, K., Kleeberg, A. & Lewandowski, J. Long-term efficiency of lake restoration by chemical phosphorus precipitation: scenario analysis with a phosphorus balance model. Water Res. 97, 153–161 (2016).
    CAS  PubMed  Google Scholar 

    71.
    Hesslein, R. H. An in situ sampler for close interval pore water studies1. Limnol. Oceanogr. 21, 912–914 (1976).
    ADS  CAS  Google Scholar 

    72.
    Psenner, R., Pucsko, R. & Sage, M. Fractionation of Organic and Inorganic Phosphorus Compounds in Lake Sediments, An Attempt to Characterize Ecologically Important Fractions (Die Fraktionierung Organischer und Anorganischer Phosphorverbindungen von Sedimenten, Versuch einer Definition Okologisch Wichtiger Fraktionen). Arch. fur Hydrobiol. 1 (1984).

    73.
    Hupfer, M., Gächter, R. & Giovanoli, R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat. Sci. 57, 305–324 (1995).
    Google Scholar 

    74.
    Reitzel, K., Hansen, J., Andersen, F. Ø, Hansen, K. S. & Jensen, H. S. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ. Sci. Technol. https://doi.org/10.1021/ES0485964 (2005).
    Article  PubMed  Google Scholar 

    75.
    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).
    ADS  CAS  Google Scholar 

    76.
    Yuan-Hui, L. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714 (1974).
    ADS  Google Scholar 

    77.
    R Core Team. R: a language and environment for statistical computing (2013).

    78.
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Håkanson, L. The importance of lake morphometry for the structure and function of lakes. Int. Rev. Hydrobiol. 90, 433–461 (2005).
    Google Scholar  More

  • in

    Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases

    1.
    Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: Updates and new features. Nucleic Acids Res.47, D649–D659 (2019).
    CAS  PubMed  Google Scholar 
    2.
    Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.46, D8–D13 (2018).
    Google Scholar 

    3.
    Chen, I. M. A. et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res.47, D666–D677 (2019).
    CAS  PubMed  Google Scholar 

    4.
    Blakemore, R. P. Magnetotactic Bacteria. Science190, 377–379 (1975).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Benoit, M. R. et al. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res.15, 5170–5177 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Alphandéry, E., Chebbi, I., Guyot, F. & Durand-Dubief, M. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review. Int. J. Hyperth.29, 801–809 (2013).
    Google Scholar 

    7.
    Chang, S. & Kirschvink, J. L. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu. Rev. Earth Planet. Sci17, 169–95 (1989).
    ADS  CAS  Google Scholar 

    8.
    Kodama, K. P., Moeller, R. E., Bazylinski, D. A., Kopp, R. E. & Chen, A. P. The mineral magnetic record of magnetofossils in recent lake sediments of Lake Ely, PA. Glob. Planet. Change110, 350–363 (2013).
    ADS  Google Scholar 

    9.
    Kopp, R. E. & Kirschvink, J. L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Science Rev.86, 42–61 (2008).
    ADS  Google Scholar 

    10.
    Mckay, C. P., Friedmann, E. I., Frankel, R. B. & Bazylinski, D. A. Magnetotactic bacteria on Earth and on Mars. Astrobiology3, 263–271 (2003).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews Microbiology14, 621–637 (2016).
    CAS  PubMed  Google Scholar 

    12.
    Lin, W., Pan, Y. & Bazylinsky, D. A. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ. Microbiol. Rep.9, 345–356 (2017).
    CAS  PubMed  Google Scholar 

    13.
    Lin, W. et al. Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae. ISME J.8, 2463–2477 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Lin, W. & Pan, Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ. Microbiol. Rep.7, 237–242 (2015).
    CAS  PubMed  Google Scholar 

    15.
    Lin, W. et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 201812, 1508–1519 (2018).
    CAS  Google Scholar 

    16.
    Ji, B. et al. Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ. Microbiol.16, 525–544 (2014).
    CAS  PubMed  Google Scholar 

    17.
    Koziaeva, V. V. et al. Magnetospirillum kuznetsovii sp. nov., a novel magnetotactic bacterium isolated from a lake in the Moscow region. Int. J. Syst. Evol. Microbiol.69, 1953–1959 (2019).
    CAS  Google Scholar 

    18.
    Matsunaga, T. et al. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res.12, 157–166 (2005).
    CAS  PubMed  Google Scholar 

    19.
    Smalley, M. D., Marinov, G. K., Bertani, L. E. & DeSalvo, G. Genome sequence of Magnetospirillum magnetotacticum strain MS-1. Genome Announc.3, e00233–15 (2015).
    PubMed  PubMed Central  Google Scholar 

    20.
    Koziaeva, V. V. et al. Draft Genome sequences of two magnetotactic bacteria, Magnetospirillum moscoviense BB-1 and Magnetospirillum marisnigri SP-1. Genome Announc.4, e00814–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    21.
    Ke, L., Liu, P., Liu, S. & Gao, M. Complete genome sequence of Magnetospirillum sp. ME-1, a novel magnetotactic bacterium isolated from East Lake, Wuhan, China. Genome Announc.5, e00485–17 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Wang, Y. et al. Complete genome sequence of Magnetospirillum sp. Strain XM-1, isolated from the Xi’an City Moat. China. Genome Announc.4, e01171–16 (2016).
    PubMed  Google Scholar 

    23.
    Grouzdev, D. S. et al. Draft genome sequence of Magnetospirillum sp. Strain SO-1, a freshwater magnetotactic bacterium isolated from the Ol’khovka River, Russia. Genome Announc.2, e00235–14 (2014).
    PubMed  PubMed Central  Google Scholar 

    24.
    Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R. & Schüler, D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol.187, 7176–7184 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Trubitsyn, D. et al. Draft genome sequence of Magnetovibrio blakemorei strain MV-1, a marine vibrioid magnetotactic bacterium. Genome Announc.4, e01330–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    26.
    Jogler, C. et al. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ. Microbiol.11, 1267–1277 (2009).
    CAS  PubMed  Google Scholar 

    27.
    Monteil, C. L. et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ. Microbiol.20, 4415–4430 (2018).
    CAS  PubMed  Google Scholar 

    28.
    Schübbe, S. et al. Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol.75, 4835–4852 (2009).
    PubMed  PubMed Central  Google Scholar 

    29.
    Ji, B. et al. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environ. Microbiol.19, 1103–1119 (2017).
    CAS  PubMed  Google Scholar 

    30.
    Morillo, V. et al. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria. Front. Microbiol.5, 72 (2014).
    PubMed  PubMed Central  Google Scholar 

    31.
    Koziaeva, V. et al. Genome-based metabolic reconstruction of a novel uncultivated freshwater magnetotactic coccus “Ca. Magnetaquicoccus inordinatus” UR-1, and proposal of a candidate family “Ca. Magnetaquicoccaceae”. Front. Microbiol.10, 2290 (2019).
    PubMed  PubMed Central  Google Scholar 

    32.
    Abreu, F. et al. Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics. ISME J.8, 1055–1068 (2014).
    CAS  PubMed  Google Scholar 

    33.
    Kolinko, S., Richter, M., Glöckner, F. O., Brachmann, A. & Schüler, D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. Environ. Microbiol. Rep.6, 524–531 (2014).
    CAS  PubMed  Google Scholar 

    34.
    Lefèvre, C. T. et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ. Microbiol.15, 2712–2735 (2013).
    PubMed  Google Scholar 

    35.
    Nakazawa, H. et al. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res.19, 1801–1808 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Lefèvre, C. T. et al. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J.6, 440–450 (2012).
    PubMed  Google Scholar 

    37.
    Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome3 (2015).

    38.
    Jogler, C. et al. Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environ. Microbiol.12, 2466–2478 (2010).
    CAS  PubMed  Google Scholar 

    39.
    Kolinko, S., Richter, M., Glöckner, F. O., Brachmann, A. & Schüler, D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ. Microbiol.18, 21–37 (2016).
    CAS  PubMed  Google Scholar 

    40.
    Lin, W. et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc. Natl. Acad. Sci.114, 2171–2176 (2017).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Koziaeva, V. V. et al. Biodiversity of magnetotactic bacteria in the freshwater lake Beloe Bordukovskoe, Russia. Microbiology89, 348–358, https://doi.org/10.1134/S002626172003008X (2020).

    42.
    Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science (80−).337, 1661–1665 (2012).
    ADS  CAS  Google Scholar 

    43.
    Kolinko, S. et al. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ. Microbiol.14, 1709–1721 (2012).
    CAS  PubMed  Google Scholar 

    44.
    BioSample of Candidatus Hydrogenedentes bacterium MAG_17971_hgd_130. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911668 (2020).

    45.
    Thrash, C. J. et al. Metagenomic assembly and prokaryotic metagenome-assembled genome sequences from the northern Gulf of Mexico “Dead Zone”. Microbiol. Resour. Announc.7, 4–6 (2018).
    Google Scholar 

    46.
    Watson, S. W. & Waterbury, J. B. Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch. Microbiol.77, 203–230 (1971).
    Google Scholar 

    47.
    Tian, R. M. et al. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ. Microbiol.18, 2481–2494 (2016).
    CAS  PubMed  Google Scholar 

    48.
    BioSample of Deltaproteobacteria bacterium MAG_22309_dsfv_022. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911677 (2020).

    49.
    Didonato, R. J. et al. Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLos One5, e14072 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    50.
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol.2, 1533–1542 (2017).
    CAS  PubMed  Google Scholar 

    51.
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data5, 1–8 (2018).
    Google Scholar 

    52.
    Sizova, M. V., Panikov, N. S., Spiridonova, E. M., Slobodova, N. V. & Tourova, T. P. Novel facultative anaerobic acidotolerant Telmatospirillum siberiense gen. nov. sp. nov. isolated from mesotrophic fen. Syst. Appl. Microbiol.30, 213–220 (2007).
    CAS  PubMed  Google Scholar 

    53.
    Bazylinski, D. A. et al. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. Evol. Microbiol.63, 801–808 (2013).
    CAS  PubMed  Google Scholar 

    54.
    Lebedeva, E. V. et al. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol. Ecol.75, 195–204 (2011).
    CAS  PubMed  Google Scholar 

    55.
    Lefèvre, C. T. et al. Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl. Environ. Microbiol.76, 3740–3743 (2010).
    PubMed  PubMed Central  Google Scholar 

    56.
    Lefèvre, C. T. et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Syst. Appl. Microbiol.40, 280–289 (2017).
    PubMed  Google Scholar 

    57.
    Mikaelyan, A. et al. High-resolution phylogenetic analysis of Endomicrobia reveals multiple acquisitions of endosymbiotic lineages by termite gut flagellates. Environ. Microbiol. Rep.9, 477–483 (2017).
    CAS  PubMed  Google Scholar 

    58.
    Izawa, K. et al. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites. Environ. Microbiol. Rep.9, 411–418 (2017).
    CAS  PubMed  Google Scholar 

    59.
    Ohkuma, M. et al. The candidate phylum ‘Termite Group 1’ of bacteria: Phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol. Ecol.60, 467–476 (2007).
    CAS  PubMed  Google Scholar 

    60.
    Dufour, S. C. et al. Magnetosome-containing bacteria living as symbionts of bivalves. ISME J.8, 2453–2462 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Monteil, C. L. et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol.4, 1088–1095 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature499, 431–437 (2013).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Probst, A. J. et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ. Microbiol.19, 459–474 (2016).
    PubMed  Google Scholar 

    64.
    Tully, B. J., Wheat, C. G., Glazer, B. T. & Huber, J. A. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J.12, 1–16 (2018).
    CAS  PubMed  Google Scholar 

    65.
    Lücker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol.4, 27 (2013).
    PubMed  PubMed Central  Google Scholar 

    66.
    Mendler, K. et al. Annotree: Visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res.47, 4442–4448 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Laczny, C. C. et al. BusyBee Web: Metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res.45, W171–W179 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics32, 605–607 (2016).
    CAS  Google Scholar 

    69.
    Lin, H. H. & Liao, Y. C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci. Rep.6, 12–19 (2016).
    Google Scholar 

    70.
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol.3, 836–843 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res.25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics29, 1072–1075 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun.9, 5114 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    74.
    Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome6, 140 (2018).
    PubMed  PubMed Central  Google Scholar 

    75.
    Chaumeil, P., Mussig, A. J., Parks, D. H. & Hugenholtz, P. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 1–3, https://doi.org/10.1093/bioinformatics/btz848 (2019).

    76.
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol.36, 996 (2018).
    CAS  PubMed  Google Scholar 

    77.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–80 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol.17, 540–552 (2000).
    CAS  PubMed  Google Scholar 

    79.
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015).
    CAS  PubMed  Google Scholar 

    80.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, A. V. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018).
    CAS  PubMed  Google Scholar 

    82.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res.47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    83.
    ASM268676v1 assembly for Magnetovibrio sp. NCBI Assembly https://identifiers.org/ncbi/insdc.gca:GCA_002686765.1 (2013).

    84.
    ASM240148v1assembly for Elusimicrobia bacterium NORP122. NCBI Assembly https://identifiers.org/ncbi/insdc.gca:GCA_002401485.1 (2017).

    85.
    BioSample of Candidatus Hydrogenedentes bacterium MAG_17963_hgd_111. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911667 (2020).

    86.
    BioSample of Deltaproteobacteria bacterium MAG_00134_naph_006. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911648 (2020).

    87.
    BioSample of Deltaproteobacteria bacterium MAG_00241_naph_010. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911655 (2020).

    88.
    BioSample of Deltaproteobacteria bacterium MAG_00792_naph_016. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911656 (2020).

    89.
    BioSample of Deltaproteobacteria bacterium MAG_09788_naph_37. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911662 (2020).

    90.
    BioSample of Deltaproteobacteria bacterium MAG_15370_dsfb_81. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911665 (2020).

    91.
    BioSample of Deltaproteobacteria bacterium MAG_17929_sntb_26. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911666 (2020).

    92.
    BioSample of Deltaproteobacteria bacterium MAG_17996_sntb_20. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911670 (2020).

    93.
    BioSample of Deltaproteobacteria bacterium MAG_22204_dsfv_001. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911675 (2020).

    94.
    BioSample of Gammaproteobacteria bacterium MAG_00150_gam_010. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911649 (2020).

    95.
    BioSample of Gammaproteobacteria bacterium MAG_00160_gam_009. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911650 (2020).

    96.
    BioSample of Gammaproteobacteria bacterium MAG_00172_gam_018. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911651 (2020).

    97.
    BioSample of Gammaproteobacteria bacterium MAG_00188_gam_006. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911652 (2020).

    98.
    BioSample of Gammaproteobacteria bacterium MAG_00212_gam_1. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911653 (2020).

    99.
    BioSample of Gammaproteobacteria bacterium MAG_00215_gam_020. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911654 (2020).

    100.
    BioSample of Magnetococcales bacterium MAG_21055_mgc_1. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911672 (2020).

    101.
    BioSample of Nitrospinae bacterium MAG_09705_ntspn_70. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911661 (2020).

    102.
    BioSample of Nitrospirae bacterium MAG_10313_ntr_31. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911663 (2020).

    103.
    BioSample of Desulfuromonadales bacterium MAG_21601_9_030. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911674 (2020).

    104.
    BioSample of Desulfuromonadales bacterium MAG_13126_9_058. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911678 (2020).

    105.
    BioSample of Desulfuromonadales bacterium MAG_21600_9_004. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911673 (2020).

    106.
    BioSample of Planctomycetes bacterium MAG_11118_pl_115. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911664 (2020).

    107.
    BioSample of Planctomycetes bacterium MAG_17991_pl_60. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911669 (2020).

    108.
    BioSample of Planctomycetes bacterium MAG_18080_pl_157. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911671 (2020).

    109.
    BioSample of Rhodospirillaceae bacterium MAG_04806_tlms_2. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911657 (2020).

    110.
    BioSample of Rhodospirillaceae bacterium MAG_05422_2-02_14. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911658 (2020).

    111.
    BioSample of Rhodospirillaceae bacterium MAG_05596_2-02_51. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911659 (2020).

    112.
    BioSample of Rhodospirillaceae bacterium MAG_06104_tlms_034. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911660 (2020).

    113.
    BioSample of Rhodospirillaceae bacterium MAG_22225_2-02_112. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911676 (2020).

    114.
    Assembly for unclassified Nitrospina Bin 25. IMG https://identifiers.org/img.taxon:2651870060 (2016).

    115.
    Assembly for Planctomycetes bacterium SCGC JGI090-P21. IMG Assembly https://identifiers.org/img.taxon:2264265205 (2015).

    116.
    Assembly for Omnitrophica bacterium SCGC_AG-290-C17. IMG Assembly https://identifiers.org/img.taxon:3300015153 (2017).

    117.
    Assembly for uncultured microorganism SbSrfc.SA12.01.D19. IMG Assembly https://identifiers.org/img.taxon:3300022116 (2017).

    118.
    Uzun, M., Alekseeva, L., Krutkina, M., Koziaeva, V. & Grouzdev, D. Analysis: unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. fighsare https://doi.org/10.6084/m9.figshare.c.4883706 (2020).

    119.
    Espínola, F. et al. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes. Microb. Ecol.75, 123–139 (2018).
    PubMed  Google Scholar 

    120.
    Wu, X. et al. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J.10, 1192–1203 (2016).
    CAS  PubMed  Google Scholar  More

  • in

    Nitrate as a potential prebiotic for the oral microbiome

    1.
    Hezel, M. P. & Weitzberg, E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 21, 7–16 (2015).
    CAS  PubMed  Google Scholar 
    2.
    Lundberg, J. O. & Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 37, 395–400 (2004).
    CAS  PubMed  Google Scholar 

    3.
    Pannala, A. S. et al. The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic. Biol. Med. 34, 576–584 (2003).
    CAS  PubMed  Google Scholar 

    4.
    Lundberg, J. O., Carlström, M. & Weitzberg, E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 28, 9–22. https://doi.org/10.1016/j.cmet.2018.06.007 (2018).
    CAS  Article  PubMed  Google Scholar 

    5.
    Wang, X. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ https://doi.org/10.1136/bmj.g4490 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Schreiber, F. et al. Denitrification in human dental plaque. BMC Biol. 8, 24 (2010).
    PubMed  PubMed Central  Google Scholar 

    7.
    Kapil, V. et al. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic. Biol. Med. 55, 93–100 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Cutler, C. et al. Post-exercise hypotension and skeletal muscle oxygenation is regulated by nitrate-reducing activity of oral bacteria. Free Radic. Biol. Med. 143, 252 (2019).
    CAS  PubMed  Google Scholar 

    9.
    Joshipura, K. J., Muñoz-Torres, F. J., Morou-Bermudez, E. & Patel, R. P. Over-the-counter mouthwash use and risk of pre-diabetes/diabetes. Nitric Oxide 71, 14–20 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Senthil Eagappan, A. R. et al. Evaluation of salivary nitric oxide level in children with early childhood caries. Dent. Res. J. (Isfahan) 13, 338–341 (2016).
    CAS  Google Scholar 

    11.
    Doel, J. J. et al. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur. J. Oral Sci. 112, 424–428 (2004).
    CAS  PubMed  Google Scholar 

    12.
    Li, H. et al. Salivary nitrate—an ecological factor in reducing oral acidity. Oral Microbiol. Immunol. 22, 67–71 (2007).
    PubMed  Google Scholar 

    13.
    Jockel-Schneider, Y. et al. Stimulation of the nitrate-nitrite-NO-metabolism by repeated lettuce juice consumption decreases gingival inflammation in periodontal recall patients: a randomized, double-blinded, placebo-controlled clinical trial. J. Clin. Periodontol. 43, 603–608 (2016).
    CAS  PubMed  Google Scholar 

    14.
    Velmurugan, S. et al. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr. 103, 25–38 (2016).
    CAS  PubMed  Google Scholar 

    15.
    Vanhatalo, A. et al. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic. Biol. Med. 124, 21–30 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Rosier, B. T., Marsh, P. D. & Mira, A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J. Dent. Res. 97, 371–380 (2018).
    CAS  PubMed  Google Scholar 

    17.
    Govoni, M., Jansson, E. A., Weitzberg, E. & Lundberg, J. O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19, 333–337 (2008).
    CAS  PubMed  Google Scholar 

    18.
    Kilian, M. et al. The oral microbiome—an update for oral healthcare professionals. Br. Dent. J. 221, 657–666 (2016).
    CAS  PubMed  Google Scholar 

    19.
    Backlund, C. J., Sergesketter, A. R., Offenbacher, S. & Schoenfisch, M. H. Antibacterial efficacy of exogenous nitric oxide on periodontal pathogens. J. Dent. Res. 93, 1089–1094 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Koopman, J. E. et al. Nitrate and the origin of saliva influence composition and short chain fatty acid production of oral microcosms. Microb. Ecol. 72, 479–492 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Ferrer, M. D. et al. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J. Appl. Microbiol. https://doi.org/10.1111/jam.13368 (2016).
    Article  Google Scholar 

    22.
    Mira, A. et al. Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications. J. Oral Microbiol. 11, 1609838. https://doi.org/10.1080/20002297.2019.1609838.eCollection2019 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Rosier, B. T. et al. Caries incidence in a healthy young adult population in relation to diet. JDR Clin. Trans. Res. 2, 142–150 (2017).
    CAS  PubMed  Google Scholar 

    24.
    Camelo-Castillo, A. J. et al. Subgingival microbiota in health compared to periodontitis and the influence of smoking. Front. Microbiol. 6, 119 (2015).
    PubMed  PubMed Central  Google Scholar 

    25.
    Navazesh, M. & Christensen, C. M. A comparison of whole mouth resting and stimulated salivary measurement procedures. J. Dent. Res. 61, 1158–1162 (1982).
    CAS  PubMed  Google Scholar 

    26.
    Junka, A. F. et al. Use of the real time xCelligence system for purposes of medical microbiology. Pol. J. Microbiol. 61, 191–197 (2012).
    PubMed  Google Scholar 

    27.
    Ferrer, M. D., Lamarche, B. & Mira, M. Studying Bacterial Biofilms Using Cellular Impedance. xCELLigence® Real-Time Cell Analyzers (2017).

    28.
    Gutiérrez, D., Hidalgo-Cantabrana, C., Rodríguez, A., García, P. & Ruas-Madiedo, P. Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PLoS ONE 11(10), e0163966 (2016).
    PubMed  PubMed Central  Google Scholar 

    29.
    Holden, N. M. & Scholefield, D. Paper test-strips for rapid determination of nitrate tracer. Commun. Soil Sci. Plant Anal. 26, 1885–1894 (1995).
    CAS  Google Scholar 

    30.
    Ferrer, M. D. et al. A pilot study to assess oral colonization and pH buffering by the probiotic Streptococcus dentisani under different dosing regimes. Odontology 108, 180–187 (2019).
    PubMed  Google Scholar 

    31.
    Helmke, A. et al. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J. Phys. https://doi.org/10.1088/1367-2630/11/11/115025 (2009).
    Article  Google Scholar 

    32.
    Dzidic, M. et al. Oral microbiota maturation during the first 7 years of life in relation to allergy development. Allergy 73, 2000–2011 (2018).
    CAS  PubMed  Google Scholar 

    33.
    Boix-Amorós, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients and human cells during lactation. Front. Microbiol. 7, 492 (2016).
    PubMed  PubMed Central  Google Scholar 

    34.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Claesson, M. J. et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38, e200 (2010).
    PubMed  PubMed Central  Google Scholar 

    36.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Google Scholar 

    38.
    Camelo-Castillo, A. et al. Nasopharyngeal microbiota in children with invasive pneumococcal disease: identification of bacteria with potential disease-promoting and protective effects. Front. Microbiol. 10, 11 (2019).
    PubMed  PubMed Central  Google Scholar 

    39.
    Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).
    PubMed  PubMed Central  Google Scholar 

    40.
    R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/, https://www.R-project.org/ (2014).

    41.
    41Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H., Szoecs, E., Wagner, H. vegan: Community Ecology Package. R package version 2.4-2 https://CRAN.R-project.org/package=vegan, https://CRAN.R-project.org/package=vegan (2017).

    42.
    Kaul, A., Mandal, S., Davidov, O. & Peddada, S. D. Analysis of microbiome data in the presence of excess zeros. Front. Microbiol. 8, 2114 (2017).
    PubMed  PubMed Central  Google Scholar 

    43.
    Qu, X. M. et al. From nitrate to nitric oxide: the role of salivary glands and oral bacteria. J. Dent. Res. 95, 1452–1456 (2016).
    CAS  PubMed  Google Scholar 

    44.
    Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 717, 179–244 (1988).
    Google Scholar 

    45.
    Ten Cate, J. M. Novel anticaries and remineralizing agents: prospects for the future. J. Dent. Res. 91, 813–815 (2012).
    PubMed  Google Scholar 

    46.
    Burleigh, M. et al. Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose. Nitric Oxide 89, 54–63 (2019).
    CAS  PubMed  Google Scholar 

    47.
    Doel, J. J., Benjamin, N., Hector, M. P., Rogers, M. & Allaker, R. P. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur. J. Oral Sci. 113, 14–19 (2005).
    CAS  PubMed  Google Scholar 

    48.
    Hyde, E. R. et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS ONE 26, 3 (2014).
    Google Scholar 

    49.
    Abusleme, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7, 1016–1025 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Griffen, A. L. et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 6, 1176–1185 (2012).
    CAS  PubMed  Google Scholar 

    51.
    Kistler, J. O., Booth, V., Bradshaw, D. J. & Wade, W. G. Bacterial community development in experimental gingivitis. PLoS ONE 8, e71227 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Ikeda, E. et al. Japanese subgingival microbiota in health vs disease and their roles in predicted functions associated with periodontitis. Odontology https://doi.org/10.1007/s10266-019-00452-4 (2019).
    Article  PubMed  Google Scholar 

    53.
    Meuric, V. et al. Signature of microbial dysbiosis in periodontitis. Appl. Environ. Microbiol. 83, e00462-e517 (2017).
    PubMed  PubMed Central  Google Scholar 

    54.
    Joshi, V., Matthews, C., Aspiras, M., de Jager, M., Ward, M. & Kumar, P. Smoking decreases structural and functional resilience in the subgingival ecosystem. CONFIDENTIAL DATA (2014).

    55.
    Corrêa, J. D. et al. Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. Sci. Rep. 9(1), 8379. https://doi.org/10.1038/s41598-019-44674-6 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Kataoka, H. et al. Rothia dentocariosa induces TNF-alpha production in a TLR2-dependent manner. Pathog. Dis. 71, 65–68 (2014).
    CAS  PubMed  Google Scholar 

    57.
    Binder, D., Zbinden, R., Widmer, U., Opravil, M. & Krause, M. Native and prosthetic valve endocarditis caused by Rothia dentocariosa: diagnostic and therapeutic considerations. Infection 25, 22–26 (1997).
    CAS  PubMed  Google Scholar 

    58.
    Alcaraz, L. D. et al. Identifying a healthy oral microbiome through metagenomics. Clin. Microbiol. Infect. 18, 54–57 (2012).
    CAS  PubMed  Google Scholar 

    59.
    Belda-Ferre, P. et al. The oral metagenome in health and disease. ISME J. 6, 46–56 (2012).
    CAS  PubMed  Google Scholar 

    60.
    Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22. https://doi.org/10.1186/1755-8794 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Seerangaiyan, K., van Winkelhoff, A. J., Harmsen, H. J. M., Rossen, J. W. A. & Winkel, E. G. The tongue microbiome in healthy subjects and patients with intra-oral halitosis. J Breath Res. 6, 3 (2017).
    Google Scholar 

    62.
    Jakubovics, N. S. & Burgess, J. G. Extracellular DNA in oral microbial biofilms. Microbes Infect. 17, 531–537 (2015).
    CAS  PubMed  Google Scholar 

    63.
    Aas, J. A. et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 46, 1407–1417 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Rosier, B. T., de Jager, M., Zaura, E. & Krom, B. P. Historical and contemporary hypotheses on the development of oral diseases: are we there yet?. Front. Cell Infect. Microbiol. 4, 92 (2014).
    PubMed  PubMed Central  Google Scholar 

    65.
    Zhou, J. et al. Influences of pH and iron concentration on the salivary microbiome in individual humans with and without caries. Appl. Environ. Microbiol. 83, e02412-02416 (2017).
    PubMed  PubMed Central  Google Scholar 

    66.
    López-López, A., Camelo-Castillo, A. J., Ferrer García, M. D., Simon-Soro, A. & Mira, A. Health-associated niche inhabitants as oral probiotics: the case of Streptococcus dentisani. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00379 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Chen, C. et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. https://doi.org/10.1038/s41396-017-0037-1 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998).
    CAS  PubMed  Google Scholar 

    69.
    Costalonga, M. & Herzberg, M. C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162, 22–38 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Vargas-Reus, M. A., Memarzadeh, K., Huang, J., Ren, G. G. & Allaker, R. P. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int. J. Antimicrob. Agents 40, 135–139 (2012).
    CAS  PubMed  Google Scholar 

    71.
    Seerangaiyan, K., Jüch, F. & Winkel, E. G. Tongue coating: its characteristics and role in intra-oral halitosis and general health-a review. J. Breath Res. 12, 034001 (2018).
    ADS  CAS  PubMed  Google Scholar 

    72.
    Mathioudakis, V. L., Vaiopoulou, E. & Aivasidis, A. Addition of nitrate for odor control in sewer networks: laboratory and field experiments. Glob. NEST 8, 37–42 (2006).
    Google Scholar 

    73.
    Ren, W. et al. Tongue coating and the salivary microbial communities vary in children with halitosis. Sci. Rep. https://doi.org/10.1038/srep24481 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    74.
    Huizenga, J. R., Vissink, A., Kuipers, E. J. & Gips, C. H. Helicobacter pylori and ammonia concentrations of whole, parotid and submandibular/sublingual saliva. Clin. Oral Investig. 3, 84–87 (1999).
    CAS  PubMed  Google Scholar 

    75.
    Kraft, B. et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).
    ADS  CAS  PubMed  Google Scholar 

    76.
    Wolff, M. et al. In vivo effects of a new dentifrice containing 1.5% arginine and 1450 ppm fluoride on plaque metabolism. J. Clin. Dent. 24, A23–A31 (2013).
    Google Scholar 

    77.
    Koopman, J. E. et al. Changes in the oral ecosystem induced by the use of 8% arginine toothpaste. Arch Oral Biol. 73, 79–87 (2016).
    PubMed  Google Scholar 

    78.
    Moncada, G. et al. Salivary urease and ADS enzymatic activity as endogenous protection against dental caries in children. J. Clin. Pediatr. Dent. 39, 358–363 (2015).
    CAS  PubMed  Google Scholar 

    79.
    Nascimento, M. M., Gordan, V. V., Garvan, C. W., Browngardt, C. M. & Burne, R. A. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol. Immunol. 24, 89–95 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Skibsted, L. H. Nitric oxide and quality and safety of muscle based foods. Nitric Oxide 24, 176–183 (2011).
    CAS  PubMed  Google Scholar 

    81.
    Sindelar, J. J. & Milkowski, A. L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 26, 259–266 (2012).
    CAS  PubMed  Google Scholar 

    82.
    Link, L. B. & Potter, J. D. Raw versus cooked vegetables and cancer risk. Cancer Epidemiol. Biomark. Prev. 13, 1422–1435 (2004).
    Google Scholar 

    83.
    Ward, M. H. Too much of a good thing? Nitrate from nitrogen fertilizers and cancer. Rev. Environ. Health 24, 357–363 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Kobayashi, J., Ohtake, K. & Uchida, H. NO-rich diet for lifestyle-related diseases. Nutrients 7, 4911–4937 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    85.
    Scientific Opinion of the Panel on Contaminants in the Food chain. Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission to perform a scientific risk assessment on nitrate in vegetables. EFSA J. 698, 1–79 (2008).
    Google Scholar  More

  • in

    Shifts in the microbiota associated with male mosquitoes (Aedes aegypti) exposed to an obligate gut fungal symbiont (Zancudomyces culisetae)

    1.
    Coon, K. L., Brown, M. R. & Strand, M. R. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasite Vector 9, 375 (2016).
    Google Scholar 
    2.
    Gaio, A. D. O. et al. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasite Vector 4, 105 (2011).
    Google Scholar 

    3.
    Bascuñán, P. et al. Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. Microbiome 6, 148 (2018).
    PubMed  PubMed Central  Google Scholar 

    4.
    Chandler, J. A., Liu, R. M. & Bennett, S. N. RNA shotgun metagenomic sequencing of Northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 6, 1–16 (2015).
    Google Scholar 

    5.
    Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Gimonneau, G. et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect. Genet. Evol. 28, 715–724 (2014).
    PubMed  Google Scholar 

    7.
    Muturi, E. J. et al. Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasite Vector 9, 18 (2016).
    Google Scholar 

    8.
    Muturi, E. J., Ramirez, J. L., Rooney, A. P. & Kim, C. H. Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl. Trop. Dis. 11, e0005377 (2017).
    PubMed  PubMed Central  Google Scholar 

    9.
    Muturi, E. J. et al. Mosquito microbiota cluster by host sampling location. Parasite Vector 11, 468 (2018).
    Google Scholar 

    10.
    Osei-Poku, J., Mbogo, C. M., Palmer, W. J. & Jiggins, F. M. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol. Ecol. 21, 5138–5150 (2012).
    CAS  PubMed  Google Scholar 

    11.
    Wang, Y. et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE 6, 1–9 (2011).
    Google Scholar 

    12.
    Carissimo, G. et al. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc. Natl. Acad. Sci. 112, E176–E185 (2015).
    CAS  PubMed  Google Scholar 

    13.
    Dennison, N. J., Jupatanakul, N. & Dimopoulos, G. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 3, 6–13 (2014).
    PubMed  PubMed Central  Google Scholar 

    14.
    Hegde, S., Rasgon, J. L. & Hughes, G. L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15, 97–102 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Jupatanakul, N., Sim, S. & Dimopoulos, G. The insect microbiome modulates vector competence for arboviruses. Viruses 6, 4294–4313 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Ramirez, J. L. et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl. Trop. Dis. 6, e1561 (2012).
    PubMed  PubMed Central  Google Scholar 

    17.
    Charan, S. S. et al. Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus. Parasitol. Res. 112, 2627–2637 (2013).
    PubMed  Google Scholar 

    18.
    Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3, e1700585 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    19.
    Gonçalves, C. M. et al. Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasite Vector 7, 320 (2014).
    Google Scholar 

    20.
    Campos, S. S. et al. Zika virus can be venereally transmitted between Aedes aegypti mosquitoes. Parasite Vector 10, 605 (2017).
    Google Scholar 

    21.
    Sánchez-Vargas, I. et al. Demonstration of efficient vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti. PLOS Negl. Trop. D 12, e0006754 (2018).
    Google Scholar 

    22.
    Valiente Moro, C. V. et al. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol. 13, 70 (2013).
    PubMed  PubMed Central  Google Scholar 

    23.
    Zouache, K. et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol. Ecol. 75, 377–389 (2011).
    CAS  PubMed  Google Scholar 

    24.
    Foster, W. A. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 40, 443–474 (1995).
    CAS  PubMed  Google Scholar 

    25.
    Minard, G., Mavingui, P. & Moro, C. V. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasite Vector 6, 146–158 (2013).
    Google Scholar 

    26.
    Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Ponnusamy, L. et al. Diversity of bacterial communities in container habitats of mosquitoes. Microb. Ecol. 56, 593–603 (2008).
    PubMed  PubMed Central  Google Scholar 

    28.
    Yee, D. A., Allgood, D., Kneitel, J. M. & Kuehn, K. A. Constitutive differences between natural and artificial container mosquito habitats: vector communities, resources, microorganisms, and habitat parameters. J. Med. Entomol. 49, 482–491 (2012).
    CAS  PubMed  Google Scholar 

    29.
    Rani, A. et al. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 9, 96 (2009).
    PubMed  PubMed Central  Google Scholar 

    30.
    Guégan, M. et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6, 49 (2018).
    PubMed  PubMed Central  Google Scholar 

    31.
    Mancini, M. V. et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol. 18, 126 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Segata, N. et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers. Sci. Rep. 6, 24207 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Rossi, P. et al. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasite Vector 8, 278 (2015).
    Google Scholar 

    34.
    Tchioffo, M. T. et al. Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Front. Microbiol. 6, 1500 (2016).
    PubMed  PubMed Central  Google Scholar 

    35.
    Moll, R. M. et al. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J. Med. Entomol. 38, 29–32 (2001).
    CAS  PubMed  Google Scholar 

    36.
    Moncayo, A. C. et al. Meconial peritrophic matrix structure, formation, and meconial degeneration in mosquito pupae/pharate adults: histological and ultrastructural aspects. J. Med. Entomol. 42, 939–944 (2005).
    PubMed  Google Scholar 

    37.
    Chavshin, A. R. et al. Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis. Symbiosis 60, 17–24 (2013).
    CAS  Google Scholar 

    38.
    Chavshin, A. R. et al. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasite Vector 8, 36 (2015).
    Google Scholar 

    39.
    Deveau, A. et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).
    CAS  PubMed  Google Scholar 

    40.
    Alencar, Y. B., Ríos-Velásquez, C. M., Lichtwardt, R. W. & Hamada, N. Trichomycetes (Zygomycota) in the digestive tract of arthropods in Amazonas Brazil. Mem. Inst. Oswaldo Cruz. 98, 799–810 (2003).
    PubMed  Google Scholar 

    41.
    Angleró-Rodríguez, Y. I. et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife 6, e28844 (2017).
    PubMed  PubMed Central  Google Scholar 

    42.
    Ramirez, J. L. et al. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Negl. Trop. Dis. 12, e0006433 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Wei, G. et al. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. 114, 5994–5999 (2017).
    CAS  PubMed  Google Scholar 

    44.
    Frankel-Bricker, J., Buerki, S., Feris, K. P. & White, M. M. Influences of a prolific gut fungus (Zancudomyces culisetae) on larval and adult mosquito (Aedes aegypti)-associated microbiota. Appl. Environ. Microbiol. 86, e02334-19 (2020).
    PubMed  PubMed Central  Google Scholar 

    45.
    Lichtwardt, R. W. Species of Harpellales living within the guts of aquatic Diptera larvae. Mycotaxon 19, 529–550 (1984).
    Google Scholar 

    46.
    Williams, M. C. & Lichtwardt, R. W. Infection of Aedes aegypti larvae by axenic cultures of the fungal genus Smittium (trichomycetes). Am. J. Bot. 59, 189–193 (1972).
    Google Scholar 

    47.
    Horn, B. W. Ultrastructural changes in trichospores of Smittium culisetae and S. culicis during in vitro sporangiospore extrusion and holdfast formation. Mycologia 81, 742–753 (1989).
    Google Scholar 

    48.
    Horn, B. W. Physiological changes associated with sporangiospore extrusion from trichospores of Smittium culisetae. Exp. Mycol. 14, 113–123 (1990).
    Google Scholar 

    49.
    Karl, P. J. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02013 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    McCreadie, J. W. & Beard, C. E. The microdistribution of the trichomycete Smittium culisetae in the hindgut of the black fly host Simulium vittatum. Mycologia 95, 998–1003 (2003).
    PubMed  Google Scholar 

    51.
    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Schloss, P. D. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 9, e00525-18 (2018).
    PubMed  PubMed Central  Google Scholar 

    53.
    Frankel-Bricker, J., Song, M. J., Benner, M. J. & Schaack, S. Variation in the microbiota associated with Daphnia magna across genotypes, populations, and temperature. Microb Ecol. https://doi.org/10.1007/s00248-019-01412-9 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Sinha, R. et al. The microbiome quality control project: Baseline study design and future directions. Genome Biol. 16, 276 (2015).
    PubMed  PubMed Central  Google Scholar 

    55.
    Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Bahl, M. I., Bergström, A. & Licht, T. R. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett. 329, 193–197 (2012).
    CAS  PubMed  Google Scholar 

    57.
    Cardona, S. et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12, 158 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Foggie, T. & Achee, N. Standard operating procedures: rearing Aedes aegypti for the HITSS and box laboratory assays training manual (2009).

    59.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    60.
    Takahashi, S. et al. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    61.
    R Core Team. R: A Language Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

    62.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    CAS  PubMed  Google Scholar 

    65.
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
    CAS  PubMed  Google Scholar 

    66.
    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
    PubMed  PubMed Central  Google Scholar 

    68.
    Davis, N. M. et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
    PubMed  PubMed Central  Google Scholar 

    69.
    Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).
    Google Scholar 

    70.
    Lüdecke, D. sjstats: statistical functions for regression models. https://cran.r-project.org/web/packages/sjstats/in (2017).

    71.
    Marwick, B. & Krishnamoorthy, K. cvequality: tests for the equality of coefficients of variation from multiple groups. https://github.com/benmarwick/cvequality (2016).

    72.
    Feltz, C. J. & Miller, G. E. An asymptotic test for the equality of coefficients of variation from k populations. Stat. Med. 15, 647–658 (1996).
    Google Scholar 

    73.
    Krishnamoorthy, K. & Lee, M. Improved tests for the equality of normal coefficients of variation. Comput. Stat. 29, 215–232 (2014).
    MathSciNet  MATH  Google Scholar 

    74.
    Kandlikar, G. S. et al. ranacapa: an R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000 Res. 7, 1734 (2018).
    Google Scholar 

    75.
    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online https://doi.org/10.1002/9781118445112.stat07841 (2017).
    Article  Google Scholar 

    76.
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 

    77.
    Kindt, R. Package ‘ BiodiversityR .’ R Proj. https://CRAN.R-project.org/package=BiodiversityR (2016).

    78.
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
    PubMed  Google Scholar 

    79.
    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
    MathSciNet  PubMed  MATH  Google Scholar 

    80.
    Bates, D. et al. Package “lme4”: linear mixed-effects models using “Eigen” and S4. J. Stat. Softw. https://CRAN.R-project.org/package=lme4 (2015).

    81.
    Fox, J. et al. Package “car.” R Doc. https://CRAN.R-project.org/package=car (2018). More

  • in

    Vulnerability of a top marine predator to coastal storms: a relationship between hydrodynamic drivers and stranding rates of newborn pinnipeds

    1.
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
    ADS  CAS  Google Scholar 
    2.
    Denny, M. W., Hunt, L. J. H., Miller, L. P. & Harley, C. D. G. On the prediction of extreme ecological events. Ecol. Monogr. 79, 397–421 (2009).
    Google Scholar 

    3.
    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).
    ADS  CAS  PubMed  Google Scholar 

    4.
    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).
    ADS  Google Scholar 

    5.
    Morley, S. A., Barnes, D. K. A. & Dunn, M. J. Predicting which species succeed in climate-force polar seas. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00507 (2019).
    Article  Google Scholar 

    6.
    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471 (2003).
    Google Scholar 

    7.
    Barbraud, C. et al. Contrasted demographic responses to facing future climate change in Southern Ocean seabirds. J. Anim. Ecol. 80, 89–100 (2010).
    PubMed  Google Scholar 

    8.
    Chambers, L. E. et al. Determining trends and environmental drivers from long-term marine mammal and seabird data: examples from Southern Australia. Reg. Environ. Change 15, 197–209 (2015).
    Google Scholar 

    9.
    Soldatini, C., Albores-Barajas, Y. V., Massa, B. & Gimenez, O. Forecasting ocean warming impacts on seabird demography: a case study on the European storm petrel. Mar. Ecol. Prog. Ser. 552, 255–269 (2016).
    ADS  Google Scholar 

    10.
    Hays, G. C., Broderick, A. C., Glen, F. & Godley, B. J. Climate change and sea turtles: a 150-year reconstruction of incubation temperatures at a major marine turtle rookery. Glob. Change Biol. 9, 642–646 (2003).
    ADS  Google Scholar 

    11.
    Barange, M. et al. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627: Rome. https://www.fao.org/3/i9705en/i9705en.pdf (2018).

    12.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Martínez, C. et al. Coastal erosion in central Chile: A new hazard?. Ocean Coast. Manag. 156, 141–155 (2018).
    Google Scholar 

    14.
    Neumann, J. E. et al. Climate change risk to US infrastructure: impacts on roads, bridges, coastal development, and urban drainage. Clim. Change 131, 97–109 (2015).
    ADS  Google Scholar 

    15.
    Frederiksen, M., Daunt, F., Harris, M. P. & Wanless, S. The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird. J. Anim. Ecol. 77, 1020–1029 (2008).
    CAS  PubMed  Google Scholar 

    16.
    Schumann, N., Gales, N. J., Harcourt, R. G. & Arnould, J. P. Impacts of climate change on Australian marine mammals. Aust. J. Zool. 61, 146–159 (2013).
    Google Scholar 

    17.
    Galbraith, H., DesRochers, D. W., Brown, S. & Reed, J. M. Predicting vulnerabilities of North American shorebirds to climate change. PLoS ONE 9, e108899 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    18.
    Bartholomew, G. A. A model for the evolution of pinniped phylogeny. Evolution 24, 546–559 (1970).
    PubMed  Google Scholar 

    19.
    Antonelis, G. A. Rookeries. In Encyclopedia of marine mammals (eds. Perrin, W. F., Würsig, B. & Thewissen, J. G. M) 1051–1052 (San Diego, CA: Academic Press, 2002).

    20.
    Ban, S. & Trites, A. W. Quantification of terrestrial haul-out and rookery characteristics of Steller sea lions. Mar. Mamm. Sci. 23, 496–507 (2007).
    Google Scholar 

    21.
    Arnould, J. P. & Littnan, C. L. Pup production and breeding areas of Australian fur seals. Aust. Mammal. 22, 51–55 (2000).
    Google Scholar 

    22.
    Pemberton, D. & Gales, R. Australian fur seals (Arctocephalus pusillus doriferus) breeding in Tasmania: population size and status. Wildlife Res. 31, 301–309 (2004).
    Google Scholar 

    23.
    Crespo, E. A., Oliva, D., Dans, S. L. & Sepúlveda, M. Estado de situación del lobo marino común en su área de distribución (Editorial Universidad de Valparaíso, Valparaíso, Chile, 2012).
    Google Scholar 

    24.
    Venegas, C. et al. Distribución y abundancia de lobos marinos (Pinnipedia: Otariidae) en la Región de Magallanes. Chile. An. Inst. Pat. Ser. Cienc. 30, 67–82 (2002).
    Google Scholar 

    25.
    Oliva, D. et al. Estimación poblacional de lobos marinos e impacto de la captura incidental. Informe Final Proyecto FIPA 2018–54, 1–150 (2020).
    Google Scholar 

    26.
    Bailys, A. M. M. et al. Diving deeper into individual foraging specializations of a large marine predator, the Southern sea lion. Oecologia 179, 1053–1065 (2015).
    ADS  Google Scholar 

    27.
    Sepúlveda, M. et al. Rol ecológico del lobo marino común en el territorio y aguas jurisdiccionales chilenas. Infome Final Proyecto FIPA 2014–28, 1–160 (2016).
    Google Scholar 

    28.
    Acevedo, J., Aguayo-Lobo, A. & Sielfeld, W. Eventos reproductivos del león marino común Otaria flavescens (Shaw 1800), en el norte de Chile (Pacífico suroriental). Rev. Biol. Mar. Oceanog. 38, 69–75 (2013).
    Google Scholar 

    29.
    Rivas, M. & Trimble, M. Aggregation behaviour in South American sea lion (Otaria flavescens) pups at Isla de Lobos. Uruguay. Aquat. Mamm 35, 55–71 (2009).
    Google Scholar 

    30.
    McLean, L. J., George, S., Lerodiaconou, D., Kirkwood, R. J. & Arnould, J. P. Y. Impact of rising sea levels on Australian fur seals. PeerJ 6, e5786 (2018).
    PubMed  PubMed Central  Google Scholar 

    31.
    Reeves, R. R. Speculations on the impact of global warming on aquatic mammals. Proceedings of the American Cetacean Society, Monterrey, CA. American Cetacean Society, San Pedro (1990).

    32.
    Boyd, I. L., Lunn, N. J. & Barton, T. Time budgets and foraging characteristics of lactating Antarctic fur seals. J. Anim. Ecol. 60, 577–592 (1991).
    Google Scholar 

    33.
    Muñoz, L., Pavez, G., Inostroza, P. & Sepúlveda, M. Foraging trips of female South American sea lions (Otaria flavescens) from isla Chañaral. Chile. Lat. Am. J. Aquat. Mamm. 9, 140–144 (2011).
    Google Scholar 

    34.
    Milette, L. L. & Trites, A. W. Maternal attendance patterns of Steller sea lions (Eumetopias jubatus) from stable and declining populations in Alaska. Can. J. Zool. 81, 340–348 (2003).
    Google Scholar 

    35.
    Jiménez, J., Armaroli, C. & Bosom, E. Preparing for the Impact of Coastal Storms, A Coastal Manager-oriented Approach. In Coastal Storms, Processes and Impacts (eds. Ciavola, P. & Coco, G) 217–239 (Wiley Blackwell, 2017).

    36.
    Oliveira, L. R. et al. Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens). PLoS ONE 12(6), e0179442 (2017).
    PubMed  PubMed Central  Google Scholar 

    37.
    Grandi, M. F., Dans, S. L. & Crespo, E. A. Social composition and spatial distribution of colonies in an expanding population of South America sea lion. J. Mamm. 89, 1218–1228 (2008).
    Google Scholar 

    38.
    Hoffman, J. I. & Forcada, J. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm. Biol. 77, 71–73 (2012).
    Google Scholar 

    39.
    Hofmeyr, G. J. G., Bester, M. N., Makhado, A. B. & Pistorius, P. A. Population changes in subantarctic and antarctic fur seals at Marion Island. S. Afr. J. Wildl. Res. 36, 55–68 (2006).
    Google Scholar 

    40.
    Raum-Suryan, K. L., Pitcher, K. W., Calkins, D. G., Sease, J. L. & Loughlin, T. R. Dispersal, rookery fidelity, and metapopulation structure of Steller sea lions (Eumetopias jubatus) in an increasing and a decreasing population in Alaska. Mar. Mamm. Sci. 18, 746–764 (2002).
    Google Scholar 

    41.
    Harcourt, R. Factors affecting early mortality in the South American fur seal (Arctocephalus australis) in Peru: Density-related effects and predation. J. Zool. 226, 259–270 (1992).
    Google Scholar 

    42.
    Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 118, 2473–2493 (2013).
    ADS  Google Scholar 

    43.
    Fuentes, M. et al. Adaptive management of marine mega-fauna in a changing climate. Mitig. Adapt. Strat. Glob. Chang. 21, 209–224 (2016).
    Google Scholar 

    44.
    Hofmeyr, G. J. G., du Toit, M. & Kirkman, S. P. Early post-release survival of stranded Cape fur seal pups at Black Rocks, Algoa Bay. S. Afr. Afr. J. Mar. Sci. 33, 463–468 (2011).
    Google Scholar 

    45.
    Fink, S. Loss of habitat: impacts on pinnipeds and their welfare. In Marine Mammal Welfare (ed. Butterworth, A.) 241–252 (Springer, Berlin, 2017).
    Google Scholar 

    46.
    Adame, K., Pardo, M. A., Salvadeo, C., Beier, E. & Elorriaga-Ver-Plancken, F. Detectability and categorization of California sea lions using an unmanned aerial vehicle. Mar. Mamm. Sci. 33, 913–925 (2017).
    Google Scholar 

    47.
    McIntosh, R., Holmberg, R. & Dann, P. Looking without landing—using remote piloted aircraft to monitor fur seal populations without disturbance. Front. Mar. Sci. 5, 1–13 (2018).
    Google Scholar 

    48.
    Tolman, H. User manual and system documentation of WAVEWATCH III version 4.18. Environmental Modeling Center Marine Modeling and Analysis Branch (2014).

    49.
    Ardhuin, F. et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr 40, 1918–1941 (2010).
    ADS  Google Scholar 

    50.
    Stopa, J. & Cheung, K. Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Model. 75, 65–83 (2014).
    ADS  Google Scholar 

    51.
    Saha, S. et al. The NCEP climate forecast system reanalysis. B. Am. Meteorol. Soc. 19, 1015–1057 (2010).
    Google Scholar 

    52.
    Smith, W. & Sandwell, D. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1957–1962 (1997).
    Google Scholar 

    53.
    Wessel, P. & Smith, W. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).
    ADS  Google Scholar 

    54.
    Beyá, J., Hidalgo, H., Winckler, P., Gallardo, A. & Alvarez, M. Generation and validation of the Chilean Wave Atlas database. Ocean Model. 116, 16–32 (2017).
    ADS  Google Scholar 

    55.
    Massey, T., Anderson, M., Smith, J. M., Gomez, J. & Jones, R. ERDC/CHL SR-11-1: STWAVE: Steady-State Spectral Wave Model User’s Manual for STWAVE, Version 6.0.Washington DC: USACE: Coastal and Hydraulics Laboratory. Flood and Coastal Storm Damage Reduction Research and Development Program (2011).

    56.
    SHOA. Atlas Hidrográfico de Chile. Valparaíso: SHOA (2017).

    57.
    Hasselmann, K. et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutschen Hydrographischen Zeitschrift 12, 1–95 (1973).
    Google Scholar 

    58.
    Pawlowicz, R., Beardsley, B. & Lentz, S. (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 28, 929–937 (2002).
    ADS  Google Scholar 

    59.
    Herbich, J. B. Handbook of coastal engineering (McGraw-Hill, New York, 2000).
    Google Scholar 

    60.
    Goda, Y. Random seas and design of maritime structures, 2nd Ed. Advanced Series on Ocean Engineering – Volume 15. World Scientific Publishing Co (2000).

    61.
    R Core Team. R: A language and environment for statistical computing. R Found Stat Comput 3 (2013). More

  • in

    Uncovering unique plasticity in life history of an endangered centenarian fish

    1.
    Ernande, B., Dieckmann, U. & Heino, M. Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc. R. Soc. Lond. B 271, 415–523 (2004).
    Google Scholar 
    2.
    Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K. & Relyea, R. A. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20, 685–692 (2005).
    PubMed  Google Scholar 

    3.
    Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection (Blakiston, Lymington, 1949).
    Google Scholar 

    4.
    Oomen, R. A. & Hutchings, J. A. Genetic variability in reaction norms in fishes. Environ. Rev. 23, 353–366 (2015).
    Google Scholar 

    5.
    Gordon, S. P., Hendry, A. P. & Reznick, D. N. Predator-induced contemporary evolution, phenotypic plasticity, and the evolution of reaction norms in guppies. Copeia 105, 514–522 (2017).
    Google Scholar 

    6.
    Olsen, E. M. et al. Small-scale biocomplexity in coastal Atlantic cod supporting a Darwinian perspective on fisheries management. Evol. Appl. 1, 524–533 (2008).
    PubMed  PubMed Central  Google Scholar 

    7.
    Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
    PubMed  PubMed Central  Google Scholar 

    8.
    Reznick, D. N. Norms of reaction in fishes. In The Exploitation of Evolving Resources (eds Stokes, K. et al.) 72–90 (Springer, Berlin Heidelberg, 1993).
    Google Scholar 

    9.
    Trippel, E. A. Age at maturity as a stress indicator in fisheries. Bioscience 45, 759–771 (1995).
    Google Scholar 

    10.
    Mims, M. C. & Olden, J. D. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshw. Biol. 58, 50–62 (2013).
    Google Scholar 

    11.
    Bennett, M. G., Whiles, M. R. & Whitledge, G. W. Population-level responses of life history traits to flow regime in three common stream fish species. Ecohydrology 9, 1388–1399 (2016).
    Google Scholar 

    12.
    Congdon, J. D., Dunham, A. E., Hopkins, W. A., Rowe, C. L. & Hinton, T. G. Resource allocation-based life histories: A conceptual basis for studies of ecological toxicology. Environ. Toxicol. Chem. 20, 1698–1703 (2001).
    CAS  PubMed  Google Scholar 

    13.
    Walsh, M. R. & Reznick, D. N. Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. PNAS 105, 594–599 (2008).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Sokolova, I. M. Energy-Limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr Comp Biol 53, 597–608 (2013).
    PubMed  Google Scholar 

    15.
    Roff, D. A. The Evolution of Life History Parameters in Teleosts. Can. J. Fish. Aquat. Sci. 41, 989–1000 (1984).
    Google Scholar 

    16.
    Ward, H. G. M., Post, J. R., Lester, N. P., Askey, J. P. & Godin, T. Empirical evidence of plasticity in life-history characteristics across climatic and fish density gradients. Can. J. Fish. Aquat. Sci. 74, 464–474 (2016).
    Google Scholar 

    17.
    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).
    PubMed  Google Scholar 

    18.
    Alberto, F. et al. Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J. Evol. Biol. 24, 1442–1454 (2011).
    CAS  PubMed  Google Scholar 

    19.
    Toräng, P. et al. Large-scale adaptive differentiation in the alpine perennial herb Arabis alpina. New Phytol. 206, 459–470 (2015).
    PubMed  Google Scholar 

    20.
    Sparks, M. M., Westley, P. A. H., Falke, J. A. & Quinn, T. P. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon. Glob. Change Biol. 23, 5203–5217 (2017).
    ADS  Google Scholar 

    21.
    Wright, P. J. Methodological challenges to examining the causes of variation in stock reproductive potential. Fish. Res. 138, 14–22 (2013).
    Google Scholar 

    22.
    Conover, D. O. & Baumann, H. PERSPECTIVE: The role of experiments in understanding fishery-induced evolution. Evol. Appl. 2, 276–290 (2009).
    PubMed  PubMed Central  Google Scholar 

    23.
    Nagrodski, A., Murchie, K. J., Stamplecoskie, K. M., Suski, C. D. & Cooke, S. J. Effects of an experimental short-term cortisol challenge on the behaviour of wild creek chub Semotilus atromaculatus in mesocosm and stream environments. J. Fish Biol. 82, 1138–1158 (2013).
    CAS  PubMed  Google Scholar 

    24.
    Winemiller, K. O. Life history strategies, population regulation, and implications for fisheries management. Can. J. Fish. Aquat. Sci. 62, 872–885 (2005).
    Google Scholar 

    25.
    Weeks, S. C. Phenotypic plasticity of life-history traits in clonal and sexual fish (Poeciliopsis) at high and low densities. Oecologia 93, 307–314 (1993).
    ADS  PubMed  Google Scholar 

    26.
    Ziegler, P. E., Lyle, J. M., Haddon, M. & Ewing, G. P. Rapid changes in life-history characteristics of a long-lived temperate reef fish. Mar. Freshwater Res. 58, 1096–1107 (2008).
    Google Scholar 

    27.
    Genner, M. J. et al. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob. Change Biol. 16, 517–527 (2010).
    ADS  Google Scholar 

    28.
    Wanner, G. A., Shuman, D. A. & Willis, D. W. Food habits of juvenile Pallid Sturgeon and adult Shovelnose Sturgeon in the Missouri River downstream of Fort Randall Dam, South Dakota. J. Freshw. Ecol. 22, 81–92 (2007).
    Google Scholar 

    29.
    Grohs, K. L., Klumb, R. A., Chipps, S. R. & Wanner, G. A. Ontogenetic patterns in prey use by Pallid Sturgeon in the Missouri River, South Dakota and Nebraska. J. Appl. Ichthyol. 25, 48–53 (2009).
    Google Scholar 

    30.
    Gerrity, P. C., Guy, C. S. & Gardner, W. M. Juvenile Pallid Sturgeon are piscivorous: a call for conserving native cyprinids. Trans. Am. Fish. Soc. 135, 604–609 (2006).
    Google Scholar 

    31.
    Keenlyne, K. D., Grossman, E. M. & Jenkins, L. G. Fecundity of the Pallid Sturgeon. Trans. Am. Fish. Soc. 121, 139–140 (1992).
    Google Scholar 

    32.
    Koch, J. D., Steffensen, K. D. & Pegg, M. A. Validation of age estimates obtained from juvenile Pallid Sturgeon Scaphirhynchus albus pectoral fin spines. J. Appl. Ichthyol. 27, 209–212 (2011).
    Google Scholar 

    33.
    Hamel, M. J. et al. Using mark–recapture information to validate and assess age and growth of long-lived fish species. Can. J. Fish. Aquat. Sci. 71, 559–566 (2014).
    Google Scholar 

    34.
    Braaten, P. J. et al. Age estimations of wild Pallid Sturgeon (Scaphirhynchus albus, Forbes & Richardson 1905) based on pectoral fin spines, otoliths and bomb radiocarbon: inferences on recruitment in the dam-fragmented Missouri River. J. Appl. Ichthyol. 31, 821–829 (2015).
    Google Scholar 

    35.
    Keenlyne, K. D. & Jenkins, L. G. Age at sexual maturity of the Pallid Sturgeon. Trans. Am. Fish. Soc. 122, 393–396 (1993).
    Google Scholar 

    36.
    Dryer, M. P. & Sandvol, A. J. Pallid Sturgeon recovery plan (United States Fish and Wildlife Service, Bismarck, North Dakota, 1990).
    Google Scholar 

    37.
    Bramblett, R. G. & White, R. G. Habitat use and movements of Pallid and Shovelnose Sturgeon in the Yellowstone and Missouri Rivers in Montana and North Dakota. Trans. Am. Fish. Soc. 130, 1006–1025 (2001).
    Google Scholar 

    38.
    Jordan, G. R. et al. Status of knowledge of the Pallid Sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905). J. Appl. Ichthyol. 32, 191–207 (2016).
    Google Scholar 

    39.
    Hesse, L. W. Taming the wild Missouri River: what has it cost?. Fisheries 12, 2–9 (1987).
    Google Scholar 

    40.
    Latka, D. C., Nestler, J. & Hesse, L. W. Restoring physical habitat in the Missouri River: a historical perspective. In Restoration Planning for the River of the Missouri River Ecosystem (eds Hesse, L. W. et al.) 350–359 (Biological Report 19, National Biological Survey, Washington, D.C., 1993).
    Google Scholar 

    41.
    Yager, L. A., Dixon, M. D., Cowman, T. C. & Soluk, D. A. Historic changes (1941–2008) in side channel and backwater habitats on an unchannelized reach of the Missouri River. River Res. Appl. 29, 493–501 (2013).
    Google Scholar 

    42.
    Galat, D. L. & Lipkin, R. Restoring ecological integrity of great rivers: historical hydrographs aid in defining reference conditions for the Missouri River. In Assessing the Ecological Integrity of Running Waters. Developments in Hydrobiology (eds Jungwirth, M. et al.) 29–48 (Springer, Dordrecht, 2000).
    Google Scholar 

    43.
    Welker, T. L. & Drobish, M. R. Pallid Sturgeon population assessment project. United States Army Corps of Engineers, Omaha District, Volume 1.6 Yankton (SD) (2016).

    44.
    Wildhaber, M. L., Albers, J. L., Green, N. S. & Moran, E. H. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered Pallid Sturgeon example. Ecol. Model. 359, 434–448 (2017).
    Google Scholar 

    45.
    Schrey, A. W. & Heist, E. J. Stock structure of Pallid Sturgeon analyzed with microsatellite loci. J. Appl. Ichthyol. 23, 297–303 (2007).
    Google Scholar 

    46.
    Eichelberger, J. S., Braaten, P. J., Fuller, D. B., Krampe, M. S. & Heist, E. J. Novel single-nucleotide polymorphism markers confirm successful spawning of endangered Pallid Sturgeon in the upper Missouri River basin. Trans. Am. Fish. Soc. 143, 1373–1385 (2014).
    CAS  Google Scholar 

    47.
    Hamel, M. J. et al. Range-wide age and growth characteristics of shovelnose sturgeon from mark–recapture data: implications for conservation and management. Can. J. Fish. Aquat. Sci. 72, 71–82 (2014).
    Google Scholar 

    48.
    Fabens, A. J. Properties and fitting of the von Bertalanffy growth curve. Growth 29, 265–289 (1965).
    CAS  PubMed  Google Scholar 

    49.
    Isely, J. J. & Grabowski, T. B. Age and growth. In Analysis and Interpretation of Freshwater Fisheries Data (eds Guy, C. S. & Brown, M. L.) 187–228 (American Fisheries Society, Bethesda, 2007).
    Google Scholar 

    50.
    Pauly, D. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy’s growth formula. Ber. Inst. F. Meereskunde Univ. Kiel., No. 63 (1979)

    51.
    Kirkwood, G. P. Estimation of von Bertalanffy growth curve parameters using both length increment and age–length data. Can. J. Fish. Aquat. Sci. 40, 1405–1411 (1983).
    Google Scholar 

    52.
    Hewitt, D. A. & Hoenig, J. M. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 6, 433 (2005).
    Google Scholar 

    53.
    Seber, G. A. F. The Estimation of Animal Abundance and Related Parameters 2nd edn. (MacMillian, New York, 1982).
    Google Scholar 

    54.
    Steffensen, K. D., Pegg, M. A. & Mestl, G. E. Population characteristics of Pallid Sturgeon (Scaphirhynchus albus (Forbes & Richardson)) in the Lower Missouri River. J. Appl. Ichthyol. 29, 687–695 (2013).
    Google Scholar 

    55.
    Holmquist, L. M., Guy, C. S., Tews, A. & Webb, M. A. H. First maturity and spawning periodicity of hatchery-origin Pallid Sturgeon in the upper Missouri River above Fort Peck Reservoir, Montanna. J. Appl. Ichthyol. 35, 138–148 (2019).
    Google Scholar 

    56.
    Pegg, M. A., Pierce, C. L. & Roy, A. Hydrological alteration along the Missouri River Basin: a time series approach. Aquat. Sci. 65, 63–72 (2003).
    Google Scholar 

    57.
    Jacobson, R. B. & Galat, D. L. Flow and form in rehabilitation of large-river ecosystems: an example from the Lower Missouri River. Geomorphology 77, 249–269 (2006).
    ADS  Google Scholar 

    58.
    McEwen, B. S. & Wingfield, J. C. The concept of allostasis in biology and biomedicine. Horm. Behav. 43, 2–15 (2003).
    PubMed  Google Scholar 

    59.
    Olsen, E. M. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932–935 (2004).
    ADS  CAS  PubMed  Google Scholar 

    60.
    Kopp, M. & Matuszewski, S. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7, 169–191 (2014).
    PubMed  Google Scholar 

    61.
    Phillis, C. C. et al. Shifting thresholds: rapid evolution of migratory life histories in Steelhead/Rainbow Trout Oncorhynchus mykiss. J. Hered. 107, 51–60 (2016).
    PubMed  Google Scholar 

    62.
    Bell, G. The costs of reproduction and their consequences. Am. Nat. 116, 45–76 (1980).
    Google Scholar 

    63.
    Wright, P. J. & Trippel, E. A. Fishery-induced demographic changes in the timing of spawning: consequences for reproductive success*. Fish Fish. 10, 283–304 (2009).
    Google Scholar 

    64.
    Steffensen, K. D., Hamel, M. J. & Spurgeon, J. J. Post-stocking Pallid Sturgeon Scaphirhynchus albus growth, dispersal, and survival in the lower Missouri River. J. Appl. Ichthyol. 35, 117–127 (2019).
    Google Scholar  More

  • in

    Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya)

    Typhlatya species are found throughout marine and fresh groundwater habitats and are some of the most abundant and widespread stygofauna component in the anchialine ecosystems of the Yucatan Peninsula3,15,18,19,20. In contrast with previous authors suggesting that anchialine fauna has no distribution patterns within underwater caves21, results herein show differently. Shrimp abundance varied markedly in space and the resulting patterns differed from one system to another depending on topographic features, solar influence and geographical position (Fig. 2B). In addition, we found both diel and seasonal variations in the vertical distribution and abundance of T. mitchelli, one of the most common species in the study area3,15. Furthermore, carbon source analysis show a distinct feeding pattern across Typhlatya species. Overall, our observations on three Typhlatya species in four groundwater systems of Yucatan portray a niche partitioning where salinity appears to play a fundamental role in separating the realized niche of T. dzilamensis from that of T. mitchelli and T. pearsei, whilst solar influence, food selection, space, and diel behavior would partitions the later species´ ecological niche. The upcoming discussion focuses on the biological processes that could explain the patterns identified in the present study.
    One of the most outstanding characteristics of the karstic anchialine ecosystems in Yucatan is the vertical stratification of water masses, where the marine intrusion from the coast infiltrates under the meteoric water that infiltrates underground, resulting in clearly defined layers with marked salinity changes. Salinity gradients in aquatic habitats are considered one of the most important limiting factors of species distributions22. Changes in environmental salinity may impose severe physiological stress23. Therefore, salinity commonly governs geographical distributions, adaptive radiations, speciation and physiology22,24. Whilst crustaceans are known to have originated in the ocean, atyid shrimps have a long history since the colonization of freshwater environments and their systematics have revealed frequent cave invasions4,25,26. Studies on Halocaridina rubra from anchialine ponds in Hawaii, which are subject to marked daily fluctuations in environmental salinity, have shown these shrimp maintain constitutively activated mechanisms of ion regulation and high cellular osmoregulation in the gills regardless of salinity24. Typhlatya, as an anchialine cave restricted genus25, must have developed a series of adaptations enabling their survival in coastal caves. Furthermore, speciation in Yucatan’s Typhlatya must have resulted in physiological, biochemical and genetic adaptations that derived in a different tolerance to salinity between closely related species and the colonization of subterranean habitats which are heterogeneous in depth and distance from the coast. Our results show that these shrimps are distributed according to salinity: T. mitchelli was found in all sites exclusively in the freshwater layer, T. pearsei was only observed in the fresh water at Nohmozon, and T. dzilamensis was only found in saline water at Ponderosa. The distribution patterns of Typhlatya species observed in this study constitute initial evidence in support of a physiological differentiation among species. Future research in adaptive physiology in response to salinity is key to reveal the osmoregulatory mechanisms and bioenergetics that will further explain the habitat selection (or limits) of these anchialine species (Chávez-Solís et al. in prep.).
    It is noteworthy that T. pearsei was most abundant in the system with the highest dissolved oxygen in our study (Fig. 1). Perhaps, T. pearsei is more sensitive to hypoxia than the rest of its congeners. If this hypothesis is true, future studies should demonstrate a reduced metabolic capacity of T. pearsei under hypoxia, whereas T. mitchelli and T. dzilamensis should be comparatively less affected. Moreover, T. mitchelli should present a higher physiological performance, enabling to outcompete T. pearsei in hypoxic freshwater environments. Correspondingly T. pearsei should outcompete T. mitchelli under normoxia. Research on tolerance to hypoxia in stygobionts could test these predictions and provide a deeper understanding of the distribution patterns and adaptation mechanisms to dissolved oxygen variations in caves.
    Despite the importance of oxygen and salinity determining the distribution patterns of many crustacean populations22,27, it does not explain the vertical and horizontal distribution of Typhlatya species in systems without a halocline. Abundance differences of T. mitchelli with depth in both Tza Itza and Kankirixche (Fig. 5) suggest that other explanatory variables are involved. Whilst light would appear to be a poor candidate explaining the distribution of blind stygobionts, negative phototaxis, as suggested by the results in the present study, has also been observed in anophthalmic stygobiont beetles Paroster macrosturtensis from Australian calcrete aquifers28. Evidence of this behavior is supported by observations of T. pearsei in the cenote pool at Nohmozon occurring only at night. In addition, transects nearest to the surface in Tza Itza and Kankirixche (i.e. those where sunlight had its greatest influence) consistently had low occurrence of T. mitchelli, particularly during day observations (Fig. 5). Furthermore, day/night differences in the abundance of T. mitchelli in Tza Itza and Nohmozon were limited to the shallow transects, were light influence was strongest. Differences in the way direct sunlight enters and reaches the water surface at Kankirixche compared to Tza Itza, together with the negative phototaxis, could account for the variations in the daily patterns of T. mitchelli observed between these two systems. Measuring traces of light in a cavern with commercial instruments can be challenging. Mejía-Ortiz et al.29 implemented an elegant solution by using long exposure photographs to show trace light at different depths in a dry cavern. Automated light quantification, however, is needed to determine whether light intensity triggers diel behavior in Typhlatya.
    Diel migrations and nocturnal activity as that observed in this study have been previously reported in other blind stygobitic crustacean species, such as Creaseria morleyi30,31, Halocaridina rubra32, and Hadenoecus subterraneous33. Species restricted to caves are generally characterized by the reduction of visual structures and are part of the common troglomorphic features observed in stygobionts. Although some vestigial eye structures are observable in Typhlatya, no sign of visual function or pigments are evident, suggesting these species could be grouped as microphthalmic, or even anophthalmic (sensu Friedrich33). Whilst the assumption of anophthalmy—defined as “the lack of eyes at any stage of the life cycle and across populations”—is based on the absence of peripherally observable eyes, it may overlook vestiges of internalized visual organs and does not exclude the existence of other extra-retinal photoreceptors33. The negative phototactic behavior as a probable cause for the diel migrations described in the present study must find support in a mechanism of light detection amongst Typhlatya or closely related species. If these shrimps are still capable of perceiving light despite their visual reduction, then the way light reaches the water column will have a relevant role in keeping the circadian clock tuned, hence activity confined exclusively to dark hours night. Our observations also suggest that populations inhabiting the aphotic cave hydro-regions are present regardless of the time of day or night, as in T. dzilamensis. The constancy of biotic and abiotic parameters in this region may prevent the synchronization of the biological clocks of stygobionts33. The lack of a synchronizer in a cave population could result in a shift of their circadian rhythm producing an unsynchronized circadian rhythm among the population, an arrhythmic biological clock33, or a reduction of sleep duration34. Our recurrent observations of T. dzilamensis in caves at any given time of day or night is consistent with any of these scenarios. Research on the anatomy of the eye, the nervous system, photoreceptors, biological clocks and genetic expression in Typhlatya is needed to further explain the differences in behavior and activity patterns observed both among and within these species.
    A possible contributing factor to Typhlatya diel behavior in the cenote pools and light influenced caverns could be related to the presence of epigean and stygobitic predators that may also influence the distribution and size of prey populations. Predation has been shown to modify prey behavior by inducing vertical migration patterns or forcing prey to retrieve to refuges during light periods32,35. Predators in cenote pools include a diverse array of freshwater fish36 and other stygobionts, such as Ophisternon infernale, Typhlias pearsei, Creaseria morleyi and the stygofile Rhamdia guatemalensis, all of which were recorded during night observations in the present study.
    Habitat preference in the underground ecosystems is certainly linked to a number of ecological tradeoffs. A balancing component for blind prey living in the sun influenced hydro regions (thus an easy prey) could be the access to recently deposited plant debris rich in nutrients, or algae which are high in nitrogen content and easier to assimilate than plants10,37. This could be selecting T. mitchelli and T. pearsei to remain close to the cenote pools.
    Advantages of shallow waters could also be a greater amount of dissolved oxygen and other organic inputs that are unlikely to reach the cave passages. If cenote pools are the only place in anchialine systems where photosynthesis takes place and constitute sinkholes for allochthonous input, then these hydro regions represent a nutrient attraction for cave primary consumers. Stygobionts in this trophic level would increase in density at cenote pools, further attracting epigean and hypogean predators. Results in this direction would suggest that cenote pools are “feeding hotspots” for all species in the heterotrophic anchialine ecosystem. If, on the other hand, photosynthetic and allochthonous nutrient input is scarce or absent in the cenote pool or represents a decimating risk due to visual predators, then Typhlatya must find food in the oligotrophic caves. If the aphotic dwelling T. dzilamensis deep inside caves has developed a strategy to incorporate in situ production sources (such as chemosynthesis or methane derived biomass) to their diet, then most individuals would keep away from the busy photosynthetic hot-spots.
    Caves are considered oligotrophic because of a severe and almost constant scarcity of food. Additionally, bacterial mats have been suggested to yield lower energy transfer than that of photosynthesis38. Even so, a trade-off in energy transfer versus the risk of predation can be recognized. In either scenario, the anchialine ecosystems would appear to have a bottom-up control trophic structure, where the availability of autotrophs governs the abundance and distribution of the community. Our results show a greater abundance in hydro-regions linked to the surface (namely cenote pools and caverns), while cave populations were the least abundant throughout this study. Stable isotopes and radiocarbon analysis would link the distribution patterns herein observed with the available feeding sources and the importance of these sources to each of the species.
    Metabolic pathways in autotrophs have different isotopic fractionation rates—a differential uptake of isotopes—which create specific carbon-isotope fingerprints11. δ13C values of consumers reflect those of their feeding sources and will be passed on to higher trophic levels, enabling the reconstruction of food webs9,10,11. The wide range of δ13C and Δ14C values observed in Typhlatya species collected from fresh groundwater (FGW) and saline groundwater (SGW) environments suggests a mixed contribution of photosynthetic and chemosynthetic derived matter, as well as modern and ancient carbon contributing to their biomass. Nevertheless, our results show each species has a specific carbon composition indicating a differential food proportion from each of the available sources.
    The range of C/N ratios of  More