in

Nitrate as a potential prebiotic for the oral microbiome

[adace-ad id="91168"]
  • 1.

    Hezel, M. P. & Weitzberg, E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 21, 7–16 (2015).

    CAS  PubMed  Google Scholar 

  • 2.

    Lundberg, J. O. & Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 37, 395–400 (2004).

    CAS  PubMed  Google Scholar 

  • 3.

    Pannala, A. S. et al. The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic. Biol. Med. 34, 576–584 (2003).

    CAS  PubMed  Google Scholar 

  • 4.

    Lundberg, J. O., Carlström, M. & Weitzberg, E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 28, 9–22. https://doi.org/10.1016/j.cmet.2018.06.007 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Wang, X. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ https://doi.org/10.1136/bmj.g4490 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Schreiber, F. et al. Denitrification in human dental plaque. BMC Biol. 8, 24 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Kapil, V. et al. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic. Biol. Med. 55, 93–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Cutler, C. et al. Post-exercise hypotension and skeletal muscle oxygenation is regulated by nitrate-reducing activity of oral bacteria. Free Radic. Biol. Med. 143, 252 (2019).

    CAS  PubMed  Google Scholar 

  • 9.

    Joshipura, K. J., Muñoz-Torres, F. J., Morou-Bermudez, E. & Patel, R. P. Over-the-counter mouthwash use and risk of pre-diabetes/diabetes. Nitric Oxide 71, 14–20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Senthil Eagappan, A. R. et al. Evaluation of salivary nitric oxide level in children with early childhood caries. Dent. Res. J. (Isfahan) 13, 338–341 (2016).

    CAS  Google Scholar 

  • 11.

    Doel, J. J. et al. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur. J. Oral Sci. 112, 424–428 (2004).

    CAS  PubMed  Google Scholar 

  • 12.

    Li, H. et al. Salivary nitrate—an ecological factor in reducing oral acidity. Oral Microbiol. Immunol. 22, 67–71 (2007).

    PubMed  Google Scholar 

  • 13.

    Jockel-Schneider, Y. et al. Stimulation of the nitrate-nitrite-NO-metabolism by repeated lettuce juice consumption decreases gingival inflammation in periodontal recall patients: a randomized, double-blinded, placebo-controlled clinical trial. J. Clin. Periodontol. 43, 603–608 (2016).

    CAS  PubMed  Google Scholar 

  • 14.

    Velmurugan, S. et al. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr. 103, 25–38 (2016).

    CAS  PubMed  Google Scholar 

  • 15.

    Vanhatalo, A. et al. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic. Biol. Med. 124, 21–30 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Rosier, B. T., Marsh, P. D. & Mira, A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J. Dent. Res. 97, 371–380 (2018).

    CAS  PubMed  Google Scholar 

  • 17.

    Govoni, M., Jansson, E. A., Weitzberg, E. & Lundberg, J. O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19, 333–337 (2008).

    CAS  PubMed  Google Scholar 

  • 18.

    Kilian, M. et al. The oral microbiome—an update for oral healthcare professionals. Br. Dent. J. 221, 657–666 (2016).

    CAS  PubMed  Google Scholar 

  • 19.

    Backlund, C. J., Sergesketter, A. R., Offenbacher, S. & Schoenfisch, M. H. Antibacterial efficacy of exogenous nitric oxide on periodontal pathogens. J. Dent. Res. 93, 1089–1094 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Koopman, J. E. et al. Nitrate and the origin of saliva influence composition and short chain fatty acid production of oral microcosms. Microb. Ecol. 72, 479–492 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Ferrer, M. D. et al. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J. Appl. Microbiol. https://doi.org/10.1111/jam.13368 (2016).

    Article  Google Scholar 

  • 22.

    Mira, A. et al. Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications. J. Oral Microbiol. 11, 1609838. https://doi.org/10.1080/20002297.2019.1609838.eCollection2019 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Rosier, B. T. et al. Caries incidence in a healthy young adult population in relation to diet. JDR Clin. Trans. Res. 2, 142–150 (2017).

    CAS  PubMed  Google Scholar 

  • 24.

    Camelo-Castillo, A. J. et al. Subgingival microbiota in health compared to periodontitis and the influence of smoking. Front. Microbiol. 6, 119 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Navazesh, M. & Christensen, C. M. A comparison of whole mouth resting and stimulated salivary measurement procedures. J. Dent. Res. 61, 1158–1162 (1982).

    CAS  PubMed  Google Scholar 

  • 26.

    Junka, A. F. et al. Use of the real time xCelligence system for purposes of medical microbiology. Pol. J. Microbiol. 61, 191–197 (2012).

    PubMed  Google Scholar 

  • 27.

    Ferrer, M. D., Lamarche, B. & Mira, M. Studying Bacterial Biofilms Using Cellular Impedance. xCELLigence® Real-Time Cell Analyzers (2017).

  • 28.

    Gutiérrez, D., Hidalgo-Cantabrana, C., Rodríguez, A., García, P. & Ruas-Madiedo, P. Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PLoS ONE 11(10), e0163966 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Holden, N. M. & Scholefield, D. Paper test-strips for rapid determination of nitrate tracer. Commun. Soil Sci. Plant Anal. 26, 1885–1894 (1995).

    CAS  Google Scholar 

  • 30.

    Ferrer, M. D. et al. A pilot study to assess oral colonization and pH buffering by the probiotic Streptococcus dentisani under different dosing regimes. Odontology 108, 180–187 (2019).

    PubMed  Google Scholar 

  • 31.

    Helmke, A. et al. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J. Phys. https://doi.org/10.1088/1367-2630/11/11/115025 (2009).

    Article  Google Scholar 

  • 32.

    Dzidic, M. et al. Oral microbiota maturation during the first 7 years of life in relation to allergy development. Allergy 73, 2000–2011 (2018).

    CAS  PubMed  Google Scholar 

  • 33.

    Boix-Amorós, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients and human cells during lactation. Front. Microbiol. 7, 492 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Claesson, M. J. et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38, e200 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Camelo-Castillo, A. et al. Nasopharyngeal microbiota in children with invasive pneumococcal disease: identification of bacteria with potential disease-promoting and protective effects. Front. Microbiol. 10, 11 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/, https://www.R-project.org/ (2014).

  • 41.

    41Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H., Szoecs, E., Wagner, H. vegan: Community Ecology Package. R package version 2.4-2 https://CRAN.R-project.org/package=vegan, https://CRAN.R-project.org/package=vegan (2017).

  • 42.

    Kaul, A., Mandal, S., Davidov, O. & Peddada, S. D. Analysis of microbiome data in the presence of excess zeros. Front. Microbiol. 8, 2114 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Qu, X. M. et al. From nitrate to nitric oxide: the role of salivary glands and oral bacteria. J. Dent. Res. 95, 1452–1456 (2016).

    CAS  PubMed  Google Scholar 

  • 44.

    Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 717, 179–244 (1988).

    Google Scholar 

  • 45.

    Ten Cate, J. M. Novel anticaries and remineralizing agents: prospects for the future. J. Dent. Res. 91, 813–815 (2012).

    PubMed  Google Scholar 

  • 46.

    Burleigh, M. et al. Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose. Nitric Oxide 89, 54–63 (2019).

    CAS  PubMed  Google Scholar 

  • 47.

    Doel, J. J., Benjamin, N., Hector, M. P., Rogers, M. & Allaker, R. P. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur. J. Oral Sci. 113, 14–19 (2005).

    CAS  PubMed  Google Scholar 

  • 48.

    Hyde, E. R. et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS ONE 26, 3 (2014).

    Google Scholar 

  • 49.

    Abusleme, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7, 1016–1025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Griffen, A. L. et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 6, 1176–1185 (2012).

    CAS  PubMed  Google Scholar 

  • 51.

    Kistler, J. O., Booth, V., Bradshaw, D. J. & Wade, W. G. Bacterial community development in experimental gingivitis. PLoS ONE 8, e71227 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Ikeda, E. et al. Japanese subgingival microbiota in health vs disease and their roles in predicted functions associated with periodontitis. Odontology https://doi.org/10.1007/s10266-019-00452-4 (2019).

    Article  PubMed  Google Scholar 

  • 53.

    Meuric, V. et al. Signature of microbial dysbiosis in periodontitis. Appl. Environ. Microbiol. 83, e00462-e517 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Joshi, V., Matthews, C., Aspiras, M., de Jager, M., Ward, M. & Kumar, P. Smoking decreases structural and functional resilience in the subgingival ecosystem. CONFIDENTIAL DATA (2014).

  • 55.

    Corrêa, J. D. et al. Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. Sci. Rep. 9(1), 8379. https://doi.org/10.1038/s41598-019-44674-6 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Kataoka, H. et al. Rothia dentocariosa induces TNF-alpha production in a TLR2-dependent manner. Pathog. Dis. 71, 65–68 (2014).

    CAS  PubMed  Google Scholar 

  • 57.

    Binder, D., Zbinden, R., Widmer, U., Opravil, M. & Krause, M. Native and prosthetic valve endocarditis caused by Rothia dentocariosa: diagnostic and therapeutic considerations. Infection 25, 22–26 (1997).

    CAS  PubMed  Google Scholar 

  • 58.

    Alcaraz, L. D. et al. Identifying a healthy oral microbiome through metagenomics. Clin. Microbiol. Infect. 18, 54–57 (2012).

    CAS  PubMed  Google Scholar 

  • 59.

    Belda-Ferre, P. et al. The oral metagenome in health and disease. ISME J. 6, 46–56 (2012).

    CAS  PubMed  Google Scholar 

  • 60.

    Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22. https://doi.org/10.1186/1755-8794 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Seerangaiyan, K., van Winkelhoff, A. J., Harmsen, H. J. M., Rossen, J. W. A. & Winkel, E. G. The tongue microbiome in healthy subjects and patients with intra-oral halitosis. J Breath Res. 6, 3 (2017).

    Google Scholar 

  • 62.

    Jakubovics, N. S. & Burgess, J. G. Extracellular DNA in oral microbial biofilms. Microbes Infect. 17, 531–537 (2015).

    CAS  PubMed  Google Scholar 

  • 63.

    Aas, J. A. et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 46, 1407–1417 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Rosier, B. T., de Jager, M., Zaura, E. & Krom, B. P. Historical and contemporary hypotheses on the development of oral diseases: are we there yet?. Front. Cell Infect. Microbiol. 4, 92 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Zhou, J. et al. Influences of pH and iron concentration on the salivary microbiome in individual humans with and without caries. Appl. Environ. Microbiol. 83, e02412-02416 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    López-López, A., Camelo-Castillo, A. J., Ferrer García, M. D., Simon-Soro, A. & Mira, A. Health-associated niche inhabitants as oral probiotics: the case of Streptococcus dentisani. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00379 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Chen, C. et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. https://doi.org/10.1038/s41396-017-0037-1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998).

    CAS  PubMed  Google Scholar 

  • 69.

    Costalonga, M. & Herzberg, M. C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162, 22–38 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Vargas-Reus, M. A., Memarzadeh, K., Huang, J., Ren, G. G. & Allaker, R. P. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int. J. Antimicrob. Agents 40, 135–139 (2012).

    CAS  PubMed  Google Scholar 

  • 71.

    Seerangaiyan, K., Jüch, F. & Winkel, E. G. Tongue coating: its characteristics and role in intra-oral halitosis and general health-a review. J. Breath Res. 12, 034001 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 72.

    Mathioudakis, V. L., Vaiopoulou, E. & Aivasidis, A. Addition of nitrate for odor control in sewer networks: laboratory and field experiments. Glob. NEST 8, 37–42 (2006).

    Google Scholar 

  • 73.

    Ren, W. et al. Tongue coating and the salivary microbial communities vary in children with halitosis. Sci. Rep. https://doi.org/10.1038/srep24481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Huizenga, J. R., Vissink, A., Kuipers, E. J. & Gips, C. H. Helicobacter pylori and ammonia concentrations of whole, parotid and submandibular/sublingual saliva. Clin. Oral Investig. 3, 84–87 (1999).

    CAS  PubMed  Google Scholar 

  • 75.

    Kraft, B. et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 76.

    Wolff, M. et al. In vivo effects of a new dentifrice containing 1.5% arginine and 1450 ppm fluoride on plaque metabolism. J. Clin. Dent. 24, A23–A31 (2013).

    Google Scholar 

  • 77.

    Koopman, J. E. et al. Changes in the oral ecosystem induced by the use of 8% arginine toothpaste. Arch Oral Biol. 73, 79–87 (2016).

    PubMed  Google Scholar 

  • 78.

    Moncada, G. et al. Salivary urease and ADS enzymatic activity as endogenous protection against dental caries in children. J. Clin. Pediatr. Dent. 39, 358–363 (2015).

    CAS  PubMed  Google Scholar 

  • 79.

    Nascimento, M. M., Gordan, V. V., Garvan, C. W., Browngardt, C. M. & Burne, R. A. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol. Immunol. 24, 89–95 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Skibsted, L. H. Nitric oxide and quality and safety of muscle based foods. Nitric Oxide 24, 176–183 (2011).

    CAS  PubMed  Google Scholar 

  • 81.

    Sindelar, J. J. & Milkowski, A. L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 26, 259–266 (2012).

    CAS  PubMed  Google Scholar 

  • 82.

    Link, L. B. & Potter, J. D. Raw versus cooked vegetables and cancer risk. Cancer Epidemiol. Biomark. Prev. 13, 1422–1435 (2004).

    Google Scholar 

  • 83.

    Ward, M. H. Too much of a good thing? Nitrate from nitrogen fertilizers and cancer. Rev. Environ. Health 24, 357–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Kobayashi, J., Ohtake, K. & Uchida, H. NO-rich diet for lifestyle-related diseases. Nutrients 7, 4911–4937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Scientific Opinion of the Panel on Contaminants in the Food chain. Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission to perform a scientific risk assessment on nitrate in vegetables. EFSA J. 698, 1–79 (2008).

    Google Scholar 


  • Source: Ecology - nature.com

    Study: A plunge in incoming sunlight may have triggered “Snowball Earths”

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey