in

Vulnerability of a top marine predator to coastal storms: a relationship between hydrodynamic drivers and stranding rates of newborn pinnipeds

[adace-ad id="91168"]
  • 1.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    ADS  CAS  Google Scholar 

  • 2.

    Denny, M. W., Hunt, L. J. H., Miller, L. P. & Harley, C. D. G. On the prediction of extreme ecological events. Ecol. Monogr. 79, 397–421 (2009).

    Google Scholar 

  • 3.

    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    ADS  Google Scholar 

  • 5.

    Morley, S. A., Barnes, D. K. A. & Dunn, M. J. Predicting which species succeed in climate-force polar seas. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00507 (2019).

    Article  Google Scholar 

  • 6.

    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471 (2003).

    Google Scholar 

  • 7.

    Barbraud, C. et al. Contrasted demographic responses to facing future climate change in Southern Ocean seabirds. J. Anim. Ecol. 80, 89–100 (2010).

    PubMed  Google Scholar 

  • 8.

    Chambers, L. E. et al. Determining trends and environmental drivers from long-term marine mammal and seabird data: examples from Southern Australia. Reg. Environ. Change 15, 197–209 (2015).

    Google Scholar 

  • 9.

    Soldatini, C., Albores-Barajas, Y. V., Massa, B. & Gimenez, O. Forecasting ocean warming impacts on seabird demography: a case study on the European storm petrel. Mar. Ecol. Prog. Ser. 552, 255–269 (2016).

    ADS  Google Scholar 

  • 10.

    Hays, G. C., Broderick, A. C., Glen, F. & Godley, B. J. Climate change and sea turtles: a 150-year reconstruction of incubation temperatures at a major marine turtle rookery. Glob. Change Biol. 9, 642–646 (2003).

    ADS  Google Scholar 

  • 11.

    Barange, M. et al. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627: Rome. https://www.fao.org/3/i9705en/i9705en.pdf (2018).

  • 12.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Martínez, C. et al. Coastal erosion in central Chile: A new hazard?. Ocean Coast. Manag. 156, 141–155 (2018).

    Google Scholar 

  • 14.

    Neumann, J. E. et al. Climate change risk to US infrastructure: impacts on roads, bridges, coastal development, and urban drainage. Clim. Change 131, 97–109 (2015).

    ADS  Google Scholar 

  • 15.

    Frederiksen, M., Daunt, F., Harris, M. P. & Wanless, S. The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird. J. Anim. Ecol. 77, 1020–1029 (2008).

    CAS  PubMed  Google Scholar 

  • 16.

    Schumann, N., Gales, N. J., Harcourt, R. G. & Arnould, J. P. Impacts of climate change on Australian marine mammals. Aust. J. Zool. 61, 146–159 (2013).

    Google Scholar 

  • 17.

    Galbraith, H., DesRochers, D. W., Brown, S. & Reed, J. M. Predicting vulnerabilities of North American shorebirds to climate change. PLoS ONE 9, e108899 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Bartholomew, G. A. A model for the evolution of pinniped phylogeny. Evolution 24, 546–559 (1970).

    PubMed  Google Scholar 

  • 19.

    Antonelis, G. A. Rookeries. In Encyclopedia of marine mammals (eds. Perrin, W. F., Würsig, B. & Thewissen, J. G. M) 1051–1052 (San Diego, CA: Academic Press, 2002).

  • 20.

    Ban, S. & Trites, A. W. Quantification of terrestrial haul-out and rookery characteristics of Steller sea lions. Mar. Mamm. Sci. 23, 496–507 (2007).

    Google Scholar 

  • 21.

    Arnould, J. P. & Littnan, C. L. Pup production and breeding areas of Australian fur seals. Aust. Mammal. 22, 51–55 (2000).

    Google Scholar 

  • 22.

    Pemberton, D. & Gales, R. Australian fur seals (Arctocephalus pusillus doriferus) breeding in Tasmania: population size and status. Wildlife Res. 31, 301–309 (2004).

    Google Scholar 

  • 23.

    Crespo, E. A., Oliva, D., Dans, S. L. & Sepúlveda, M. Estado de situación del lobo marino común en su área de distribución (Editorial Universidad de Valparaíso, Valparaíso, Chile, 2012).

    Google Scholar 

  • 24.

    Venegas, C. et al. Distribución y abundancia de lobos marinos (Pinnipedia: Otariidae) en la Región de Magallanes. Chile. An. Inst. Pat. Ser. Cienc. 30, 67–82 (2002).

    Google Scholar 

  • 25.

    Oliva, D. et al. Estimación poblacional de lobos marinos e impacto de la captura incidental. Informe Final Proyecto FIPA 2018–54, 1–150 (2020).

    Google Scholar 

  • 26.

    Bailys, A. M. M. et al. Diving deeper into individual foraging specializations of a large marine predator, the Southern sea lion. Oecologia 179, 1053–1065 (2015).

    ADS  Google Scholar 

  • 27.

    Sepúlveda, M. et al. Rol ecológico del lobo marino común en el territorio y aguas jurisdiccionales chilenas. Infome Final Proyecto FIPA 2014–28, 1–160 (2016).

    Google Scholar 

  • 28.

    Acevedo, J., Aguayo-Lobo, A. & Sielfeld, W. Eventos reproductivos del león marino común Otaria flavescens (Shaw 1800), en el norte de Chile (Pacífico suroriental). Rev. Biol. Mar. Oceanog. 38, 69–75 (2013).

    Google Scholar 

  • 29.

    Rivas, M. & Trimble, M. Aggregation behaviour in South American sea lion (Otaria flavescens) pups at Isla de Lobos. Uruguay. Aquat. Mamm 35, 55–71 (2009).

    Google Scholar 

  • 30.

    McLean, L. J., George, S., Lerodiaconou, D., Kirkwood, R. J. & Arnould, J. P. Y. Impact of rising sea levels on Australian fur seals. PeerJ 6, e5786 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Reeves, R. R. Speculations on the impact of global warming on aquatic mammals. Proceedings of the American Cetacean Society, Monterrey, CA. American Cetacean Society, San Pedro (1990).

  • 32.

    Boyd, I. L., Lunn, N. J. & Barton, T. Time budgets and foraging characteristics of lactating Antarctic fur seals. J. Anim. Ecol. 60, 577–592 (1991).

    Google Scholar 

  • 33.

    Muñoz, L., Pavez, G., Inostroza, P. & Sepúlveda, M. Foraging trips of female South American sea lions (Otaria flavescens) from isla Chañaral. Chile. Lat. Am. J. Aquat. Mamm. 9, 140–144 (2011).

    Google Scholar 

  • 34.

    Milette, L. L. & Trites, A. W. Maternal attendance patterns of Steller sea lions (Eumetopias jubatus) from stable and declining populations in Alaska. Can. J. Zool. 81, 340–348 (2003).

    Google Scholar 

  • 35.

    Jiménez, J., Armaroli, C. & Bosom, E. Preparing for the Impact of Coastal Storms, A Coastal Manager-oriented Approach. In Coastal Storms, Processes and Impacts (eds. Ciavola, P. & Coco, G) 217–239 (Wiley Blackwell, 2017).

  • 36.

    Oliveira, L. R. et al. Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens). PLoS ONE 12(6), e0179442 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Grandi, M. F., Dans, S. L. & Crespo, E. A. Social composition and spatial distribution of colonies in an expanding population of South America sea lion. J. Mamm. 89, 1218–1228 (2008).

    Google Scholar 

  • 38.

    Hoffman, J. I. & Forcada, J. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm. Biol. 77, 71–73 (2012).

    Google Scholar 

  • 39.

    Hofmeyr, G. J. G., Bester, M. N., Makhado, A. B. & Pistorius, P. A. Population changes in subantarctic and antarctic fur seals at Marion Island. S. Afr. J. Wildl. Res. 36, 55–68 (2006).

    Google Scholar 

  • 40.

    Raum-Suryan, K. L., Pitcher, K. W., Calkins, D. G., Sease, J. L. & Loughlin, T. R. Dispersal, rookery fidelity, and metapopulation structure of Steller sea lions (Eumetopias jubatus) in an increasing and a decreasing population in Alaska. Mar. Mamm. Sci. 18, 746–764 (2002).

    Google Scholar 

  • 41.

    Harcourt, R. Factors affecting early mortality in the South American fur seal (Arctocephalus australis) in Peru: Density-related effects and predation. J. Zool. 226, 259–270 (1992).

    Google Scholar 

  • 42.

    Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 118, 2473–2493 (2013).

    ADS  Google Scholar 

  • 43.

    Fuentes, M. et al. Adaptive management of marine mega-fauna in a changing climate. Mitig. Adapt. Strat. Glob. Chang. 21, 209–224 (2016).

    Google Scholar 

  • 44.

    Hofmeyr, G. J. G., du Toit, M. & Kirkman, S. P. Early post-release survival of stranded Cape fur seal pups at Black Rocks, Algoa Bay. S. Afr. Afr. J. Mar. Sci. 33, 463–468 (2011).

    Google Scholar 

  • 45.

    Fink, S. Loss of habitat: impacts on pinnipeds and their welfare. In Marine Mammal Welfare (ed. Butterworth, A.) 241–252 (Springer, Berlin, 2017).

    Google Scholar 

  • 46.

    Adame, K., Pardo, M. A., Salvadeo, C., Beier, E. & Elorriaga-Ver-Plancken, F. Detectability and categorization of California sea lions using an unmanned aerial vehicle. Mar. Mamm. Sci. 33, 913–925 (2017).

    Google Scholar 

  • 47.

    McIntosh, R., Holmberg, R. & Dann, P. Looking without landing—using remote piloted aircraft to monitor fur seal populations without disturbance. Front. Mar. Sci. 5, 1–13 (2018).

    Google Scholar 

  • 48.

    Tolman, H. User manual and system documentation of WAVEWATCH III version 4.18. Environmental Modeling Center Marine Modeling and Analysis Branch (2014).

  • 49.

    Ardhuin, F. et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr 40, 1918–1941 (2010).

    ADS  Google Scholar 

  • 50.

    Stopa, J. & Cheung, K. Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Model. 75, 65–83 (2014).

    ADS  Google Scholar 

  • 51.

    Saha, S. et al. The NCEP climate forecast system reanalysis. B. Am. Meteorol. Soc. 19, 1015–1057 (2010).

    Google Scholar 

  • 52.

    Smith, W. & Sandwell, D. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1957–1962 (1997).

    Google Scholar 

  • 53.

    Wessel, P. & Smith, W. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).

    ADS  Google Scholar 

  • 54.

    Beyá, J., Hidalgo, H., Winckler, P., Gallardo, A. & Alvarez, M. Generation and validation of the Chilean Wave Atlas database. Ocean Model. 116, 16–32 (2017).

    ADS  Google Scholar 

  • 55.

    Massey, T., Anderson, M., Smith, J. M., Gomez, J. & Jones, R. ERDC/CHL SR-11-1: STWAVE: Steady-State Spectral Wave Model User’s Manual for STWAVE, Version 6.0.Washington DC: USACE: Coastal and Hydraulics Laboratory. Flood and Coastal Storm Damage Reduction Research and Development Program (2011).

  • 56.

    SHOA. Atlas Hidrográfico de Chile. Valparaíso: SHOA (2017).

  • 57.

    Hasselmann, K. et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutschen Hydrographischen Zeitschrift 12, 1–95 (1973).

    Google Scholar 

  • 58.

    Pawlowicz, R., Beardsley, B. & Lentz, S. (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 28, 929–937 (2002).

    ADS  Google Scholar 

  • 59.

    Herbich, J. B. Handbook of coastal engineering (McGraw-Hill, New York, 2000).

    Google Scholar 

  • 60.

    Goda, Y. Random seas and design of maritime structures, 2nd Ed. Advanced Series on Ocean Engineering – Volume 15. World Scientific Publishing Co (2000).

  • 61.

    R Core Team. R: A language and environment for statistical computing. R Found Stat Comput 3 (2013).


  • Source: Ecology - nature.com

    Study: A plunge in incoming sunlight may have triggered “Snowball Earths”

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey