Recent atmospheric drying in Siberia is not unprecedented over the last 1,500 years
1.
Kirdyanov, A. V., Treydte, K. S., Nikolaev, A., Helle, G. & Schleser, G. H. Climate signals in tree-ring width, density and δ13C from larches in Eastern Siberia (Russia). Chem. Geol. 252(1–2), 31–41 (2008).
ADS CAS Google Scholar
2.
Sidorova, O. V. et al. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Change Biol. 16(3), 1003–1018 (2010).
ADS Google Scholar
3.
Churakova, O. V. et al. Application of eco-physiological models to the climatic interpretation of δ13C and δ18O measured in Siberian larch tree-rings. Dendrochronologia 39, 51–59 (2016).
Google Scholar
4.
Kropp, H. et al. Tree density influences eco-hydrological drivers of plant–water relations in a larch boreal forest in Siberia. Ecohydrology 12(7), e2132 (2019).
Google Scholar
5.
Saurer, M. et al. Spatial variability and temporal trends in water-use efficiency of European forests. Glob. Change Biol. 20(12), 3700–3712 (2014).
ADS Google Scholar
6.
Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649. https://doi.org/10.1038/s41561-019-0400-0 (2019).
CAS PubMed PubMed Central Article Google Scholar
7.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571(7766), 550–554 (2019).
ADS CAS PubMed Google Scholar
8.
Sidorova, O. V. et al. Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?. Oecologia 161(4), 825–835 (2009).
ADS PubMed Google Scholar
9.
Knorre, A. A. et al. Twentieth century trends in tree ring stable isotopes (δ13C and δ18O) of Larix sibirica under dry conditions in the forest steppe in Siberia. J. Geophys. Res. Biogeosci. 115(G3), 1–12 (2010).
Google Scholar
10.
Cable, J. M. et al. Permafrost thaw affects boreal deciduous plant transpiration through increased soil water, deeper thaw, and warmer soils. Ecohydrology 7(3), 982–997 (2014).
Google Scholar
11.
Bryukhanova, M. V. et al. The response of δ13C, δ18O and cell anatomy of Larix gmelinii tree rings to differing soil active layer depths. Dendrochronologia 34, 51–59 (2015).
Google Scholar
12.
Steiger, N. J., Smerdon, J. E., Cook, E. R. & Cook, B. I. A reconstruction of global hydroclimate and dynamical variables over the Common Era. Sci. Data 22(5), 180086 (2018).
Google Scholar
13.
Eamus, D., Boulain, N., Cleverly, J. & Breshears, D. D. Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3(8), 2711–2729 (2013).
PubMed PubMed Central Google Scholar
14.
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5(8), eaax1396 (2019).
ADS CAS PubMed PubMed Central Google Scholar
15.
Beer, C., Zimov, N., Olofsson, J., Porada, P. & Zimov, S. Production of permafrost soils from thawing by increasing herbivore density. Sci. Rep. 10, 1–10 (2020).
Google Scholar
16.
Zhang, T. & Armstrong, R. L. Soil freeze-thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett. 28(5), 763–766 (2001).
ADS Google Scholar
17.
Prokushkin, A. et al. Permafrost regime affects the nutritional status and productivity of larches in Central Siberia. Forests 9(6), 314 (2018).
Google Scholar
18.
Knorre, A. A., Kirdyanov, A. V., Prokushkin, A. S., Krusic, P. J. & Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 652, 314–319 (2019).
ADS PubMed Google Scholar
19.
Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab7469 (2020).
Article Google Scholar
20.
Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11(7), 474 (2018).
ADS CAS Google Scholar
21.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P. and Dubash, N. K. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC (2014).
22.
Schweingruber, F. H. Tree Rings: Basic and Applications of Dendrochronology (Springer, Berlin, 1988).
Google Scholar
23.
Grudd, H. Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 31, 843–857. https://doi.org/10.1007/s00382-007-0358-2 (2008).
Article Google Scholar
24.
Hantemirov, R. M. & Shiyatov, S. G. A continuous multi-millennial ring-width chronology in Yamal, northwestern Siberia. Holocene 12, 717–726 (2002).
ADS Google Scholar
25.
Churakova, O. V. et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. 15(2), 685–700 (2019).
Google Scholar
26.
Sidorova, O. V., Siegwolf, R. T., Saurer, M., Naurzbaev, M. M. & Vaganov, E. A. Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. J. Geophys. Res. Biogeosci. 113(G2), G02019 (2008).
ADS Google Scholar
27.
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503 (1989).
CAS Google Scholar
28.
Gennaretti, F. et al. Bayesian multiproxy temperature reconstruction with black spruce ring widths and stable isotopes from the northern Quebec taiga. Clim. Dyn. https://doi.org/10.1007/s00382-017-3565-5 (2017).
Article Google Scholar
29.
Helama, S., Merilainen, J. & Tuomenvirta, H. Multicentennial mega drought in northern Europe coincided with a global El Niño-Southern Oscillation drought pattern during the Mediaeval Climate Anomaly. Geology 37, 175–178. https://doi.org/10.1130/G25329A.1 (2009).
ADS Article Google Scholar
30.
Young, G. H. F., McCarroll, D., Loader, N. J. & Kirchefer, A. G. A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene https://doi.org/10.1177/0959683609351902 (2010).
Article Google Scholar
31.
Loader, N. J., Young, G. H. F., Grudd, H. & McCarroll, D. Stable carbon isotopes from Torneträsk, norther Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quatern. Sci. Rev. 62, 97–113 (2013).
ADS Google Scholar
32.
Naulier, M. et al. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Clim. Past 11, 1153–1164. https://doi.org/10.5194/cp-11-1153-2015 (2015).
Article Google Scholar
33.
Young, G. H. F. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim. Dyn. 39, 495–507. https://doi.org/10.1007/s00382-011-1246-3 (2012).
Article Google Scholar
34.
Gagen, M. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9(8), 630–635 (2016).
ADS CAS Google Scholar
35.
PAGES Hydro2k Consortium et al. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Clim. Past. 13, 1851–1900. https://doi.org/10.5194/cp-13-1851-2017 (2017).
Article Google Scholar
36.
Ljungqvist, F. C. et al. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quatern. Sci. Rev. 230, 106074 (2020).
Google Scholar
37.
Simmons, A. M. & Mahroof, R. M. Response of Bemisia tabaci (Hemiptera: Aleyrodidae) to vapor pressure deficit: oviposition, immature survival, and body size. Ann. Entomol. Soc. Am. 104(5), 928–934 (2011).
Google Scholar
38.
Willett, K. M. et al. HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim. Past 10(6), 1983–2006 (2014).
Google Scholar
39.
Sidorova, O. V., Naurzbaev, M. M., Vaganov, E. A. An integral estimation of tree ring chronologies from subarctic regions of Eurasia. Proc. TRACE 84–92 (2005).
40.
Impacts of a warming arctic: arctic climate impact assessment. ACIA Overview report. Cambridge University Press. 140 pp. (2004).
41.
Sugimoto, A., Yanagisawa, N., Fujita, N. & Maximov, T. C. Importance of permafrost as a source of water for plants in east Siberian taiga. Ecol. Res. 17(4), 493–503 (2002).
Google Scholar
42.
Linderholm, H. W. et al. Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Clim. Past 14, 473–514 (2018).
Google Scholar
43.
Peros, M. C. & Gajewski, K. Pollen-based reconstructions of late Holocene climate from the central and western Canadian Arctic. J. Paleolimnol. 41(1), 161–175 (2009).
ADS Google Scholar
44.
Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).
PubMed PubMed Central Google Scholar
45.
Hughes, M. K., Vaganov, E. A., Shiyatov, S., Touchan, R. & Funkhouser, G. Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene 9(5), 629–634 (1999).
ADS Google Scholar
46.
Fyodorov-Davydov, D. G., Kholodov, A. L., Ostroumov, V. E., Kraev, G. N., Sorokovikov, V. A., Davudov, S. P. and Merekalova, A. A. Seasonal thaw of soils in the North Yakutian ecosystems. In Proceedings of the 9th International Conference on permafrost, pp. 481–486 (2008).
47.
Sidorova, O. V. & Naurzbaev, M. M. Response of Larix cajanderi to climatic changes at the upper timberline and in the Indigirka River valley. Lesovedenie 2(73), e75 (2002).
Google Scholar
48.
Cook, E. R. Bootstrap confidence intervals for red spruce ring-width chronologies and an assessment of age-related bias in recent growth trends. Can. J. For. Res. 20(9), 1326–1331 (1990).
Google Scholar
49.
Gagen, M. et al. Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17(4), 435–446 (2007).
ADS Google Scholar
50.
Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R. & Waterhouse, J. S. An improved technique for the batch processing of small whole wood samples to α-cellulose. Chem. Geol. 136(3–4), 313–317 (1997).
ADS CAS Google Scholar
51.
Boettger, T. et al. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an inter-laboratory comparison. Anal. Chem. 15, 4603–4612 (2007).
Google Scholar
52.
Wigley, T. M., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23(2), 201–213 (1984).
ADS Google Scholar
53.
Woodley, E. J. et al. Estimating uncertainty in pooled stable isotope time-series from tree-rings. Chem. Geol. 294, 243–248 (2012).
ADS Google Scholar
54.
Weigt, R. B. et al. Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectrom. 29(23), 2233–2244 (2015).
ADS CAS PubMed Google Scholar
55.
Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51(2), 170–193 (1999).
ADS Google Scholar
56.
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & Kenawy, A. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11(4), 1033–1043 (2010).
ADS Google Scholar
57.
Watson, G. S. & Durbin, J. Exact tests of serial correlation using noncircular statistics. Ann. Math. Stat. 1, 446–451 (1951).
MathSciNet MATH Google Scholar More
