Spatial structure, parameter nonlinearity, and intelligent algorithms in constructing pedotransfer functions from large-scale soil legacy data

  • 1.

    Greiner, L., Keller, A., Grêt-Regamey, A. & Papritz, A. Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 69, 224–237 (2017).

    Article  Google Scholar 

  • 2.

    Banwart, S. A., Nikolaidis, N. P., Zhu, Y. G., Peacock, C. L. & Sparks, D. L. Soil functions: connecting earth’s critical zone. Annu. Rev. Earth Pl. Sc. 47, 333–359 (2019).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Keesstra, S. D. et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2, 111–128 (2016).

    Article  Google Scholar 

  • 4.

    Nemes, A., Schaap, M. G., Leij, F. J. & Wösten, J. H. M. Description of the unsaturated soil hydraulic database UNSODA version 2.0. J. Hydrol. 251(3–4), 151–162 (2001).

    ADS  Article  Google Scholar 

  • 5.

    Wösten, J. H. M. The HYPRES database of hydraulic properties of European soils. Adv. Geo Ecol. 32, 135–143 (2000).

    Google Scholar 

  • 6.

    Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69(1), 140–153 (2018).

    Article  Google Scholar 

  • 7.

    Reimann, C. et al. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 88, 302–318 (2018).

    CAS  Article  Google Scholar 

  • 8.

    Batjes, N. H., Ribeiro, E. & Van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data. 12, 299–320 (2020).

    ADS  Article  Google Scholar 

  • 9.

    Filippi, P., Minasny, B., Cattle, S. R. & Bishop, T. F. A. Monitoring and modeling soil change: the influence of human activity and climatic shifts on aspects of soil spatiotemporally. Adv. Agron. 139, 153–214 (2016).

    Article  Google Scholar 

  • 10.

    Ghehi, N. G. et al. Nonparametric techniques for predicting soil bulk density of tropical rainforest top soils in Rwanda. Soil Sci. Soc. Am. J. 76, 1172–1183 (2012).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Haghverdi, A., Cornelis, W. M. & Ghahraman, B. A. Pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J. Hydrol. 442, 46–54 (2012).

    ADS  Article  Google Scholar 

  • 12.

    Aimrun, W. & Amin, M. S. M. Pedo-transfer function for saturated hydraulic conductivity of lowland paddy soils. Paddy Water Environ. 7(3), 217–225 (2009).

    Article  Google Scholar 

  • 13.

    Savvides, A., Corstanje, R., Baxter, S. J., Rawlins, B. G. & Lark, R. M. The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent. Geoderma 154(3–4), 353–358 (2010).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Akpa, S. I. C., Ugbaje, S. U., Bishop, T. F. A. & Odeh, I. O. Enhancing pedotransfer functions with environmental data for estimating bulk density and effective cation exchange capacity in a data-sparse situation. Soil Use Manage 32(4), 644–658 (2016).

    Article  Google Scholar 

  • 15.

    McBratney, A. B., Minasny, B., Cattle, S. R. & Vervoort, R. W. From pedotransfer functions to soil inference systems. Geoderma 109(1–2), 41–73 (2002).

    ADS  Article  Google Scholar 

  • 16.

    Minasny, B., McBratney, A. B. & Bristow, K. L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93(3–4), 225–253 (1999).

    ADS  Article  Google Scholar 

  • 17.

    Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108(3–4), 155–180 (2002).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Santra, P. & Das, B. S. Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. Geoderma 146(3–4), 439–448 (2008).

    ADS  Article  Google Scholar 

  • 19.

    Santra, P. et al. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. J. Earth Syst. Sci. 127(3), 35 (2018).

    ADS  Article  Google Scholar 

  • 20.

    Nemes, A. Why do they keep rejecting my manuscript—do’s and don’ts and new horizons in pedotransfer studies. Agrokémiaéstalajtan 64(2), 361–371 (2015).

    Google Scholar 

  • 21.

    Looy, V. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55(4), 1199–1256 (2017).

    ADS  Article  Google Scholar 

  • 22.

    McBratney, A. B. & Minasny, B. Spacebender . Spat Stat. 4, 57–67 (2013).

    Article  Google Scholar 

  • 23.

    Schillaci, C., Acutis, M., Vesely, F. & Saia, S. A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area. CATENA 175, 110–122 (2019).

    CAS  Article  Google Scholar 

  • 24.

    Batjes, N. H. et al. WoSIS: providing standardised soil profile data for the world. Earth Syst. Sci. Data 9, 1–14 (2017).

    ADS  Google Scholar 

  • 25.

    Mohanty, B., Gupta, A. & Das, B. S. Estimation of weathering indices using spectral reflectance over visible to mid-infrared region. Geoderma 266, 111–119 (2016).

    ADS  Article  Google Scholar 

  • 26.

    Vasava, H. B., Gupta, A., Arora, R. & Das, B. S. Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions. Geoderma 337, 914–926 (2019).

    ADS  Article  Google Scholar 

  • 27.

    Lal, R. Biochar and soil carbon sequestration. Agricultural and environmental applications of biochar: advances and barriers (SSSA Spec. Pub. 63), 175–198 (2016).

  • 28.

    Chen, T., He, T., Benesty, M., Khotilovich, V. &Tang, Y. Xgboost: extreme gradient boosting. R Package Ver. 0.4–2, 1–4 (2015).

  • 29.

    Reddy, R. S., Budihal, S. L., Kumar, S. C. R. & Naidu, L.G. K. Benchmark soils of Andhra Pradesh (NBSS Publ. No. 128, NBSS&LUP, Nagpur, 2005).

  • 30.

    Sahoo, A. K., Sarkar, D. & Gajbhiye, K. S. Soil Series of Bihar (NBSS Publ. No. 98, NBSS&LUP, Nagpur, 2002).

  • 31.

    Shyampura, R. L., Singh, S. K., Singh, R. S., Jain, B. L. & Gajbhiye, K. S. Soil Series of Rajasthan (NBSS Publ. No. 95, NBSS&LUP, Nagpur, 2002).

  • 32.

    Nayak D. C., Sarkar D. & Velayutham M. Soil series of West Bengal (NBSS Publ. No. 89, NBSS&LUP, Nagpur, 2001).

  • 33.

    Tamgadge, D. B., Gajbhiye, K. S., Velayutham, M. & Kaushal, G. S. Soil Series of Madhya Pradesh(NBSS Publ. No. 78, NBSS&LUP, Nagpur, 1999).

  • 34.

    Sarkar, D., Sah, K. D., Sahoo, A. K., & Gajbhiye, K. S. Soil Series of Orissa (NBSS Publ. No. 119, NBSS&LUP, Nagpur, 254p.2005).

  • 35.

    Challa, O., Gajbhiye, K. S., & Velayutham, M. Soil Series of Maharashtra (NBSS Publ. No. 79, NBSS&LUP, Nagpur, 1999).

  • 36.

    Sharma, J. P. Soil Series of Gujarat, NBSS Publ. No. 120 (NBSS&LUP, Nagpur, 2006).

  • 37.

    NBSS&LUP Staff. Soil Series of Kerala (NBSS Publ. No. 136, NBSS&LUP, Nagpur, 2006).

  • 38.

    De, S. et al. Sedimentation history of the Paleoproterozoic Singhbhum Group of rocks, eastern India and its implications. Earth-Sci. Rev. 163, 141–161 (2016).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Ghosh, S. K., Sahu, S. S. & Das, S. C. Clay mineralogy of alluvial, red and lateritic soil profiles from West Bengal. Proc. Ind. Natl. Sci. Acad. 40, 200–208 (1974).

    CAS  Google Scholar 

  • 40.

    Bhattacharyya, T., et al. Soils of India: historical perspective, classification and recent advances. Curr. Sci. 1308–1323 (2013).

  • 41.

    Singh, S. K., Baser, B. L. & Shyampura, R. L. Chemical composition and charge behaviour of smectites in Vertisols of Rajasthan. J. Ind. Soc. Soil Sci. 50(1), 106–111 (2002).

    CAS  Google Scholar 

  • 42.

    Singh, L. P., Parkash, B. & Singhvi, A. K. Evolution of the lower Gangetic Plain landforms and soils in West Bengal, India. CATENA 33(2), 75–104 (1998).

    CAS  Article  Google Scholar 

  • 43.

    Bandopadhyay, P. C., Eriksson, P. G. & Roberts, R. J. A verticpaleosol at the Archean-Proterozoic contact from the Singhbhum-Orissa craton, eastern India. Precambrian Res. 177(3–4), 277–290 (2010).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Bayat, H., Davatgar, N. & Jalali, M. Prediction of CEC using fractal parameters by artificial neural networks. Int. Agrophys. 28(2), 143–152 (2014).

    Article  Google Scholar 

  • 45.

    Nielson, D. R. & Wendroth, O. Spatial and temporal statistics: sampling field soils and their vegetation. GeoEcol. textbook, ISBN 3-923381-46-6, US-ISBN 1-593262-59-0 (2003).

  • 46.

    Padarian, J., Minasny, B. & McBratney, A. B. Transfer learning to localise a continental soil vis-NIR calibration model. Geoderma 340, 279–288 (2019).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Gee, G. W., & Bauder, J. W. Particle-size analysis. Methods of soil analysis: Part 1—Physical and mineralogical methods, (methods of soil an1), 383–411 (1986).

  • 49.

    Hendershot, W. H., Lalande, H., & Duquette, M. Soil reaction and exchangeable acidity. Soil Sampl. Methods Anal., 2 (1993).

  • 50.

    Soil Survey Staff. Soil Survey Manual. U.S. Department of Agriculture Handbook No. 18 U.S. Government Printing Office, Washington, DC, 437–1036 (1993).

  • 51.

    R Core Team. R: A language and environment for statistical computing. R Foundation forStatistical Computing, Vienna, Austria. ISBN 3-900051-07-0. (2013).

  • 52.

    Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Monogr. Stat. Appl. Probab. 43, 335 (1990).

    MathSciNet  MATH  Google Scholar 

  • 53.

    Székely, G. J., Rizzo, M. L. & Bakirov, N. K. Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007).

    MathSciNet  MATH  Article  Google Scholar 

  • 54.

    Sajan, K. S., Kumar, V. & Tyagi, B. Genetic algorithm based support vector machine for on-line voltage stability monitoring. Int. J. Elec. Power 73, 200–208 (2015).

    Article  Google Scholar 

  • Source: Ecology -

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields