in

Drivers of farmer-managed natural regeneration in the Sahel. Lessons for restoration

[adace-ad id="91168"]
  • 1.

    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).

    Google Scholar 

  • 2.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Rozendaal, D. M. A. et al. Biodiversity recovery of neotropical secondary forests. Sci. Adv. 5(3), eaau3114 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015).

    PubMed  Google Scholar 

  • 5.

    Chazdon, R. L. Second Growth. The Promise of Tropical Forest Regeneration in an Age of Deforestation (University of Chicago Press, Chicago, 2014).

    Google Scholar 

  • 6.

    Crossland, M., Ann, L., Pagella, T., Hadgu, K. & Sinclair, F. Implications of variation in local perception of degradation and restoration processes for implementing land degradation neutrality. Environ. Dev. 28, 42–54 (2018).

    Google Scholar 

  • 7.

    Rinaudo, T. The development of farmer managed natural regeneration. Leisa Mag. 23, 32–34 (2007).

    Google Scholar 

  • 8.

    Garrity, D. P. et al. Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur. 2, 197–214 (2010).

    Google Scholar 

  • 9.

    Bayala, J. et al. Regenerated trees in farmers’ fields increase soil carbon across the Sahel. Agrofor. Syst. 94, 401–415 (2019).

    Google Scholar 

  • 10.

    Haglund, E., Ndjeunga, J., Snook, L. & Pasternak, D. Dry land tree management for improved household livelihoods: farmer managed natural regeneration in Niger. J Environ. Manag. 92, 1696–1705 (2011).

    Google Scholar 

  • 11.

    Weston, P., Hong, R., Kabore, C. & Kull, C. A. Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa. Environ. Manag. 55, 1402–1417 (2015).

    ADS  Google Scholar 

  • 12.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. 104, 20684–20689 (2007).

    ADS  PubMed  Google Scholar 

  • 13.

    Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2010).

    Google Scholar 

  • 14.

    Myers, J. A. & Harms, K. E. Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol. Lett. 12, 1250–1260 (2009).

    PubMed  Google Scholar 

  • 15.

    Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?. For. Ecol. Manag. 303, 35–45 (2013).

    Google Scholar 

  • 16.

    Sinclair, F. & Coe, R. I. C. The options by context approach: a paradigm shift in agronomy. Exp. Agric. 55, 1–13 (2019).

    Google Scholar 

  • 17.

    Foster, S. & Janson, C. H. The relationship between seed size and establishment conditions in tropical woody plants. Ecology 66, 773–780 (1985).

    Google Scholar 

  • 18.

    Moles, A. T. & Westoby, M. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92, 372–383 (2004).

    Google Scholar 

  • 19.

    Bond, W. J. & Midgley, J. J. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol. Evol. 16, 45–51 (2001).

    CAS  PubMed  Google Scholar 

  • 20.

    Grover, H. D. & Musick, H. B. Shrubland encroachment in Southern New Mexico, USA: an analysis of desertification processes in the American Southwest. Clim. Change 17, 305–330 (1990).

    ADS  Google Scholar 

  • 21.

    Lohbeck, M., Winowiecki, L., Aynekulu, E., Okia, C. & Vågen, T.-G. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa. J. Appl. Ecol. 55, 59–68 (2018).

    Google Scholar 

  • 22.

    Giller, K. E. & Cadisch, G. Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174, 255–277 (1995).

    CAS  Google Scholar 

  • 23.

    Poorter, L. & Markesteijn, L. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40, 321–331 (2008).

    Google Scholar 

  • 24.

    Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).

    PubMed  Google Scholar 

  • 25.

    MacDougall, A. S. & Wilson, S. D. Herbivory limits recruitment in an old-field seed addition experiment. Ecology 88, 1105–1111 (2007).

    PubMed  Google Scholar 

  • 26.

    Gijsbers, H. J. M., Kessler, J. J. & Knevel, M. K. Dynamics and natural regeneration of woody species in farmed parklands in the Sahel region (Province of Passore, Burkina Faso). For. Ecol. Manag. 64, 1–12 (1994).

    Google Scholar 

  • 27.

    Bellefontaine, R. Synthèse des espèces des domaines sahélien et soudanien qui se multiplient naturellement par voie végétative. In Fonctionnement et gestion des écosystèmes forestiers contractés sahéliens (eds D’Herbès, L. et al.) (John Libbey Eurotext, Paris, 1997).

    Google Scholar 

  • 28.

    Hooper, E., Legendre, P. & Condit, R. Barriers to forest regeneration of deforested and abandoned land in Panama. J. Appl. Ecol. 42, 1165–1174 (2005).

    Google Scholar 

  • 29.

    Zida, D., Sawadogo, L., Tigabu, M., Tiveau, D. & Odén, P. C. Dynamics of sapling population in savanna woodlands of Burkina Faso subjected to grazing, early fire and selective tree cutting for a decade. For. Ecol. Manag. 243, 102–115 (2007).

    Google Scholar 

  • 30.

    Sawadogo, L., Nygård, R. & Pallo, F. Effects of livestock and prescribed fire on coppice growth after selective cutting of Sudanian savannah in Burkina Faso. Ann. For. Sci. 59, 185–195 (2002).

    Google Scholar 

  • 31.

    Louppe, D., Ouattara, N. & Coulibaly, A. Effect des feux de brousse sur la vegetation. Bois Forets des Trop. 245, 59–74 (1995).

    Google Scholar 

  • 32.

    Dey, D. C. & Hartman, G. Returning fire to Ozark Highland forest ecosystems: effects on advance regeneration. For. Ecol. Manag. 217, 37–53 (2005).

    Google Scholar 

  • 33.

    Jackson, G. Cryptogeal germination and other seedling adaptations to the burning of vegetation in savanna regions: the origin of the pyrophytic habit. New Phytol. 73, 771–780 (1974).

    ADS  Google Scholar 

  • 34.

    Haq, N. & Lovett, P. N. Evidence for anthropic selection in Sheanut tree (Vitellaria paradoxa). Agrofor. Syst. 48, 273–288 (2000).

    Google Scholar 

  • 35.

    Ndakidemi, P. A. & Semoka, J. M. R. Soil fertility survey in Western Usambara Mountains, northern Tanzania. Pedosphere 16, 237–244 (2006).

    Google Scholar 

  • 36.

    Winowiecki, L. A., Vågen, T.-G. & Huising, J. Effects of land cover on ecosystem services in Tanzania: a spatial assessment of soil organic carbon. Geoderma 263, 274–283 (2016).

    ADS  CAS  Google Scholar 

  • 37.

    FAO-EC-ISRIC. World Soil Resources Map. ftp://ftp.fao.org/agl/agll/faomwsr/wsavcl.jpg.

  • 38.

    Aide, T. M. & Cavelier, J. Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restor. Ecol. 2, 219–229 (1994).

    Google Scholar 

  • 39.

    Sawadogo, L. Adapter les approches de l’amenagement durable des forets seches aux aptitudes sociales, economiques et technologiques en Afrique: le cas du Burkina Faso (Center for International Forestry Research (CIFOR), Bogor, 2006). https://doi.org/10.17528/cifor/002145.

    Google Scholar 

  • 40.

    Kelly, B. A., Bouvet, J.-M. & Picard, N. Size class distribution and spatial pattern of Vitellaria paradoxa in relation to farmers’ practices in Mali Bokary. Agrofor. Syst. 60, 3–11 (2004).

    Google Scholar 

  • 41.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Google Scholar 

  • 42.

    Ribeiro, E. M. S. et al. Functional diversity and composition of Caatinga woody flora are negatively impacted by chronic anthropogenic disturbance. J. Ecol. 107, 2291–2302 (2019).

    Google Scholar 

  • 43.

    Cingolani, A. M., Posse, G. & Collantes, M. B. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J. Appl. Ecol. 42, 50–59 (2005).

    Google Scholar 

  • 44.

    Augustine and McNaughton. Ungulate effects on the functional species composition of plant communities : herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165–1183 (1998).

    Google Scholar 

  • 45.

    Gurvich, D. E., Enrico, L. & Cingolani, A. M. Linking plant functional traits with post-fire sprouting vigour in woody species in central Argentina. Aust. Ecol. 30, 789–796 (2005).

    Google Scholar 

  • 46.

    Bellingham, P. J. & Sparrow, A. D. Resprouting as a life history strategy in woody plant communities. Oikos 89, 409–416 (2000).

    Google Scholar 

  • 47.

    Albers, P. Linking Household Strategies to Natural Regeneration in West African Parklands (MSc thesis Wageningen University, 2019).

  • 48.

    Birch, J., Weston, P., Rinaudo, T. & Francis, R. Chapter 2.7 – Releasing the underground forest: case studies and preconditions for human movements that restore land with the farmer-managed natural regeneration (FMNR) method, in Land Restoration (edsChabay, I., Frick, M., & Helgeson, J.) 183–207 (Academic Press, Boston, 2016).

    Google Scholar 

  • 49.

    Augusseau, X., Nikiéma, P. & Torquebiau, E. Tree biodiversity, land dynamics and farmers’ strategies on the agricultural frontier of southwestern Burkina Faso. Biodivers. Conserv. 15, 613–630 (2006).

    Google Scholar 

  • 50.

    Boffa, J. M. Agroforestry Parklands in Sub-Saharan Africa. FAO Conservation Guide, Vol. 34 (1999).

  • 51.

    Vågen, T.-G., Winowiecki, L. A., Tamene Desta, L. & Tondoh, J. E. The Land Degradation Surveillance Framework (LDSF) Field Guide v3 (World Agroforestry Centre, Nairobi, 2013).

    Google Scholar 

  • 52.

    Winowiecki, L. A. et al. Landscape-scale variability of soil health indicators: effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania. Nutr. Cycl. Agroecosyst. 105, 263–274 (2016).

    CAS  Google Scholar 

  • 53.

    Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine—Open Source (‘GEOS’). R package version 0.5-1 (2019).

  • 54.

    Vågen, T.-G., Winowiecki, L. A., Abegaz, A. & Hadgu, K. M. Landsat-based approaches for mapping of land degradation prevalence and soil functional properties in Ethiopia. Remote Sens. Environ. 134, 266–275 (2013).

    ADS  Google Scholar 

  • 55.

    Vågen, T.-G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T. & Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225 (2016).

    ADS  Google Scholar 

  • 56.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Google Scholar 

  • 57.

    Wand, M. KernSmooth: Functions for Kernel Smoothing Supporting. R package version 2 (1995).

  • 58.

    Terhoeven-Urselmans, T., Vågen, T.-G., Spaargaren, O. & Shepherd, K. D. Prediction of soil fertility properties from a globally distributed soil mid-Infrared spectral library. Soil Sci. Soc. Am. J. 74, 1792 (2010).

    ADS  CAS  Google Scholar 

  • 59.

    Madari, B. E. et al. Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols. Geoderma 136, 245–259 (2006).

    ADS  CAS  Google Scholar 

  • 60.

    Reeves, J. B. III., Follett, R. F., McCarty, G. W. & Kimble, J. M. Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools?. Commun. Soil Sci. Plant Anal. 37, 2307–2325 (2006).

    CAS  Google Scholar 

  • 61.

    Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2006).

    ADS  CAS  Google Scholar 

  • 62.

    Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: what proportion of the species need to be measured?. Appl. Veg. Sci. 10, 91–96 (2007).

    Google Scholar 

  • 63.

    Laliberté, E., Legendre, P., & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. (2014).

  • 64.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields