1.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
2.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed
Article
CAS
Google Scholar
3.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B: Biol. Sci. 285, 20180792 (2018).Article
Google Scholar
4.IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. https://zenodo.org/record/3553579#.XxWzvZ5Kh-U, https://doi.org/10.5281/zenodo.3553579 (2019).5.Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Climate Change 1. https://doi.org/10.1038/s41558-019-0406-z (2019).6.Kendall, B. E. & Fox, G. A. Variation among individuals and reduced demographic stochasticity. Conserv. Biol. 16, 109–116 (2002).Article
Google Scholar
7.Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Change 8, 718–722 (2018).ADS
Article
Google Scholar
8.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed
Article
Google Scholar
9.Bestion, E., Clobert, J. & Cote, J. Dispersal response to climate change: scaling down to intraspecific variation. Ecol. Lett. 18, 1226–1233 (2015).Article
Google Scholar
10.Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449 (2013).PubMed
PubMed Central
Article
Google Scholar
11.Uriarte, M. & Menge, D. Variation between individuals fosters regional species coexistence. Ecol. Lett. 21, 1496–1504 (2018).PubMed
Article
Google Scholar
12.Banitz, T. Spatially structured intraspecific trait variation can foster biodiversity in disturbed, heterogeneous environments. Oikos 128, 1478–1491 (2019).13.Bailey, J. K. Incorporating eco-evolutionary dynamics into global change research. Funct. Ecol. 28, 3–4 (2014).Article
Google Scholar
14.Cianciaruso, M. V., Batalha, M. A., Gaston, K. J. & Petchey, O. L. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).CAS
PubMed
Article
Google Scholar
15.Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Naturalist 161, 1–28 (2003).MathSciNet
Article
Google Scholar
16.Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
17.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed
Article
Google Scholar
18.Van Valen, L. Morphological variation and width of ecological niche. Am. Naturalist 99, 377–390 (1965).Article
Google Scholar
19.Hocking, M. D., Darimont, C. T., Christie, K. S. & Reimchen, T. E. Niche variation in burying beetles (Nicrophorus spp.) associated with marine and terrestrial carrion. Can. J. Zool. 85, 437–442 (2007).Article
Google Scholar
20.Iguchi, K., Matsubara, N., Yodo, T. & Maekawa, K. Individual food niche specialization in stream-dwelling charr. Ichthyol. Res. 51, 321–326 (2004).Article
Google Scholar
21.Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).ADS
Article
Google Scholar
22.Costa, G. C., Mesquita, D. O., Colli, G. R. & Vitt, L. J. Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am. Naturalist 172, 868–877 (2008).Article
Google Scholar
23.Sheppard, C. E. et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 21, 665–673 (2018).PubMed
PubMed Central
Article
Google Scholar
24.Pol, M. V. D., Brouwer, L., Ens, B. J., Oosterbeek, K. & Tinbergen, J. M. Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers. Evolution 64, 836–851 (2010).PubMed
Article
Google Scholar
25.Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).PubMed
Article
Google Scholar
26.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677 (2009).Article
Google Scholar
27.Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
28.Svanbäck, R. & Bolnick, D. I. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol. Ecol. Res 7, 993–1012 (2005).
Google Scholar
29.Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).Article
Google Scholar
30.Orłowski, G. et al. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Total Environ. 646, 491–502 (2019).ADS
PubMed
Article
CAS
Google Scholar
31.Teuschl, Y., Taborsky, B. & Taborsky, M. How do cuckoos find their hosts? The role of habitat imprinting. Anim. Behav. 56, 1425–1433 (1998).CAS
PubMed
Article
Google Scholar
32.Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evolution 19, 411–416 (2004).Article
Google Scholar
33.Fretwell, S. D. Populations in a Seasonal Environment (Princeton University Press, 1972).34.Ingram, T., Costa‐Pereira, R. & Araújo, M. S. The dimensionality of individual niche variation. Ecology 99, 536–549 (2018).PubMed
Article
Google Scholar
35.Abrahms, B. et al. Climate mediates the success of migration strategies in a marine predator. Ecol. Lett. 21, 63–71 (2018).PubMed
Article
Google Scholar
36.Courbin, N. et al. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol. Lett. 21, 1043–1054 (2018).PubMed
Article
Google Scholar
37.Montgomery, R. A. et al. Evaluating the individuality of animal-habitat relationships. Ecol. Evol. 8, 10893–10901 (2018).PubMed
PubMed Central
Article
Google Scholar
38.Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).PubMed
Article
Google Scholar
39.Hutchinson Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article
Google Scholar
40.Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).41.Lele, S. R., Merrill, E. H., Keim, J. & Boyce, M. S. Selection, use, choice and occupancy: clarifying concepts in resource selection studies. J. Anim. Ecol. 82, 1183–1191 (2013).PubMed
Article
Google Scholar
42.Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705 (2016).ADS
PubMed
Article
Google Scholar
43.Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article
Google Scholar
44.Bastille‐Rousseau, G. & Wittemyer, G. Leveraging multidimensional heterogeneity in resource selection to define movement tactics of animals. Ecol. Lett. 22, 1417–1427 (2019).PubMed
Article
Google Scholar
45.Costa‐Pereira, R., Rudolf, V. H. W., Souza, F. L. & Araújo, M. S. Drivers of individual niche variation in coexisting species. J. Anim. Ecol. 87, 1452–1464 (2018).46.Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).Article
Google Scholar
47.Araújo, M. S. et al. Nested diets: a novel pattern of individual-level resource use. Oikos 119, 81–88 (2010).Article
Google Scholar
48.Dunne, J. A. in: Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).49.Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.12618 (2016).50.Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).ADS
CAS
PubMed
Article
Google Scholar
51.Tinker, M. T. et al. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol. Lett. 15, 475–483 (2012).Article
Google Scholar
52.Dáttilo, W., Serio‐Silva, J. C., Chapman, C. A. & Rico‐Gray, V. Highly nested diets in intrapopulation monkey–resource food webs. Am. J. Primatol. 76, 670–678 (2014).PubMed
Article
Google Scholar
53.Durell, S. E. A. L. V. D., Goss-Custard, J. D. & Caldow, R. W. G. Sex-related differences in diet and feeding method in the oystercatcher Haematopus ostralegus. J. Anim. Ecol. 62, 205–215 (1993).Article
Google Scholar
54.Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).PubMed
PubMed Central
Article
Google Scholar
55.Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).PubMed
Google Scholar
56.Fortin, D., Morris, D. W. & McLoughlin, P. D. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evolution 54, 311–328 (2008).Article
Google Scholar
57.Pires, M. M. et al. The nested assembly of individual-resource networks. J. Anim. Ecol. 80, 896–903 (2011).MathSciNet
CAS
PubMed
Article
Google Scholar
58.Cantor, M., Pires, M. M., Longo, G. O., Guimarães, P. R. & Setz, E. Z. F. Individual variation in resource use by opossums leading to nested fruit consumption. Oikos 122, 1085–1093 (2013).Article
Google Scholar
59.Santamaría, S. et al. Diet composition of the lizard Podarcis lilfordi (Lacertidae) on 2 small islands: an individual-resource network approach. Curr. Zool. 66, 39–49 (2020).PubMed
Article
Google Scholar
60.Carrascal, L. M., Alonso, J. C. & Alonso, J. A. Aggregation size and foraging behaviour of white storks Ciconia ciconia during the breeding season. Ardea 78, 399–404 (1990).
Google Scholar
61.Piper, W. H. In: Current Ornithology (eds. Nolan, V., Ketterson, E. D. & Thompson, C. F.) 125–187 https://doi.org/10.1007/978-1-4757-9915-6_4 (Springer US, 1997).62.Marzlufi, J. M. & Heinrich, B. Foraging by common ravens in the presence and absence of territory holders: an experimental analysis of social foraging. Anim. Behav. 42, 755–770 (1991).Article
Google Scholar
63.van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
64.Moore, S. A. & Bronte, C. R. Delineation of sympatric morphotypes of Lake Trout in Lake Superior. Trans. Am. Fish. Soc. 130, 1233–1240 (2001).Article
Google Scholar
65.Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).ADS
PubMed
Article
Google Scholar
66.Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).Article
Google Scholar
67.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed
PubMed Central
Article
Google Scholar
68.van Toor, M. L. et al. Flexibility of habitat use in novel environments: insights from a translocation experiment with lesser black-backed gulls. R. Soc. Open Sci. 4, 160164 (2017).PubMed
PubMed Central
Article
Google Scholar
69.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evolution 33, 790–802 (2018).Article
Google Scholar
70.ICARUS. Homepage—Animal Sensors Website. https://www.icarus.mpg.de/en (2020).71.Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).ADS
CAS
PubMed
Article
Google Scholar
72.Wikelski, M. & Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data (World Wide Web Electronic Publication, 2014).73.Leitão, P. J. & Santos, M. J. Improving models of species ecological niches: a remote sensing overview. Front. Ecol. Evol. 7, 9 (2019).74.Oeser, J. et al. Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat. Remote Sens. Ecol. Conserv. 6, 52–69 (2020).Article
Google Scholar
75.Valerio, F. et al. Predicting microhabitat suitability for an endangered small mammal using sentinel-2 data. Remote Sens. 12, 562 (2020).ADS
Article
Google Scholar
76.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed
Article
Google Scholar
77.Werner, T. K. & Sherry, T. W. Behavioral feeding specialization in Pinaroloxias inornata, the “Darwin’s Finch” of Cocos Island, Costa Rica. Proc. Natl Acad. Sci. USA 84, 5506–5510 (1987).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
78.Zurell, D. et al. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Front. Ecol. Evol. 6, 1–11 (2018).79.Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).PubMed
Article
Google Scholar
80.Fleming, C. H. et al. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).CAS
PubMed
Article
Google Scholar
81.Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article
Google Scholar
82.Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).83.Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evolution 9, 305–319 (2018).Article
Google Scholar
84.Elliot, A., Garcia, E. F. J. & Boesman, P. F. D. In: Birds of the World (eds. del Hoyo, J. Elliott, A., Sargatal, J. Christie, D. A. & de Juana, E.) (Cornell Lab of Ornithology, 2020).85.Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 1 (2016).Article
Google Scholar
86.Alonso, J. C., Alonso, J. A. & Carrascal, L. M. Habitat selection by foraging White Storks, Ciconia ciconia, during the breeding season. Can. J. Zool. https://doi.org/10.1139/z91-270 (2011).87.Barbaro, L., Giffard, B., Charbonnier, Y., Halder, Ivan & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: a transcontinental experiment. Diversity Distrib. 20, 149–159 (2014).Article
Google Scholar
88.Fisher, R. J. & Davis, S. K. From Wiens to Robel: a review of grassland-bird habitat selection. J. Wildl. Manag. 74, 265–273 (2010).Article
Google Scholar
89.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article
Google Scholar
90.Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS
Article
Google Scholar
91.Manly, B. F. L., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2002).92.Johnson, D. S., Thomas, D. L., Hoef, J. M. V. & Christ, A. A general framework for the analysis of animal resource selection from telemetry data. Biometrics 64, 968–976 (2008).MathSciNet
PubMed
MATH
Article
Google Scholar
93.Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed
PubMed Central
Article
Google Scholar
94.Rosenberg, D. K. & McKelvey, K. S. Estimation of habitat selection for central-place foraging animals. J. Wildl. Manag. 63, 1028–1038 (1999).Article
Google Scholar
95.Roughgarden, J. Evolution of niche width. American Naturalist 106, 683–718 (1972).96.Sargeant, B. L. Individual foraging specialization: niche width versus niche overlap. Oikos 116, 1431–1437 (2007).Article
Google Scholar
97.Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Soc. Netw. 31, 155–163 (2009).Article
Google Scholar
98.Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).Article
Google Scholar
99.Opsahl, T. Structure and Evolution of Weighted Networks (University of London (Queen Mary College), 2009).100.Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 30 (2020).PubMed
PubMed Central
Article
Google Scholar
101.Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Data from: Individual environmental niches in mobile organisms. Movebank Data Repository. https://doi.org/10.5441/001/1.rj21g1p1 (2021).102.Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Code from: Individual environmental niches in mobile organisms. Zenodo. https://doi.org/10.5281/zenodo.5032460 (2021). More