in

Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens

[adace-ad id="91168"]
  • 1.

    Huang Y, Liu Q, Jia WQ, Yan CR, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut. 2020;260:114096.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Li WF, Wufuer R, Duo J, Wang SZ, Luo YM, Zhang DY, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci Total Environ. 2020;749:141420.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Weithmann N, Moller JN, Loder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv. 2018;4:eaap8060.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Jiang JH, Wang XW, Ren HY, Cao GL, Xie GJ, Xing DF, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci Total Environ. 2020;746:141378.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun. 2020;11:3381.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Roblin B, Ryan M, Vreugdenhil A, Aherne J. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland). Environ Sci Technol. 2020;54:11100–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Xu CY, Zhang BB, Gu CJ, Shen CS, Yin SS, Aamir M, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J Hazard Mater. 2020;400:123228.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Machado AAD, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol. 2018;24:1405–16.

    Article 

    Google Scholar 

  • 9.

    Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020;368:1430–1.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol. 2016;50:5774–80.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Boots B, Russell CW, Green DS. Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol. 2019;53:11496–506.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Li H-Z, Zhu D, Lindhardt JH, Lin S-M, Ke X, Cui L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ Sci Technol. 2021;55:4658–68.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Machado AAD, Lau CW, Kloas W, Bergmann J, Bacheher JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53:6044–52.

    Article 
    CAS 

    Google Scholar 

  • 14.

    Zhu D, Chen Q-L, An X-L, Yang X-R, Christie P, Ke X, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem. 2018;116:302–10.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Arias-Andres M. Who is where in the plastisphere, and why does it matter? Mol Ecol Resour. 2020;20:617–9.

    Article 

    Google Scholar 

  • 17.

    Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the plastisphere. ISME J. 2020;15:789–806.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Yang Y, Liu W, Zhang Z, Grossart H-P, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biot. 2020;104:6501–11.

    CAS 
    Article 

    Google Scholar 

  • 19.

    Bhagwat G, Zhu Q, O’Connor W, Subashchandrabose S, Grainge I, Knight R, et al. Exploring the composition and functions of plastic microbiome using whole-genome sequencing. Environ Sci Technol. 2021;55:4899–913.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Arias-Andres M, Klumper U, Rojas-Jimenez K, Grossart HP. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut. 2018;237:253–61.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Zhou J, Gui H, Banfield CC, Wen Y, Zang H, Dippold MA, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem. 2021;156:108211.

    CAS 
    Article 

    Google Scholar 

  • 22.

    Hernando-Amado S, Coquet TM, Baquero F, Martinez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4:1432–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186–200.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Zhu Y-G, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, et al. Soil biota, antimicrobial resistance and planetary health. Environ Int. 2019;131:105059.

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Bank MS, Ok YS, Swarzenski PW. Microplastic’s role in antibiotic resistance. Science. 2020;369:1315.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019;165:114979.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Yang K, Chen Q-L, Chen M-L, Li H-Z, Liao H, Pu Q, et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environ Sci Technol. 2020;54:11322–32.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Yang YY, Liu GH, Song WJ, Ye C, Lin H, Li Z, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79–86.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Lu X-M, Lu P-Z, Liu X-P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci Total Environ. 2020;709:136276.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Yan XY, Yang XY, Tang Z, Fu JJ, Chen FM, Zhao Y, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ Pollut. 2020;262:114270.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Zhu D, Ding J, Yin Y, Ke X, O’Connor P, Zhu Y-G. Effects of earthworms on the microbiomes and antibiotic resistomes of detritus fauna and phyllospheres. Environ Sci Technol. 2020;54:6000–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol R 2017;81:e00002–17.

    Article 

    Google Scholar 

  • 35.

    Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 2019;366:886–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Change Biol. 2020;26:3221–9.

    Article 

    Google Scholar 

  • 38.

    de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. Soil microbial moisture dependences and responses to drying-rewetting: the legacy of 18 years drought. Glob Change Biol. 2019;25:1005–15.

    Article 

    Google Scholar 

  • 39.

    Li MM, Ray P, Teets C, Pruden A, Xia K, Knowlton KF. Short communication: Increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries. J Dairy Sci. 2020;103:2877–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Luo T, Wang Y, Pandey P. The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment. Environ Sci Pollut R. 2021;28:6675–83.

    CAS 
    Article 

    Google Scholar 

  • 41.

    Yun H, Liang B, Ding Y, Li S, Wang Z, Khan A, et al. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Res. 2021;194:116926.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Zhang Y-J, Hu H-W, Chen Q-L, Singh BK, Yan H, Chen D, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int. 2019;130:104912.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Zhou S-Y-D, Zhu D, Giles M, Daniell T, Neilson R, Yang X-R. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environ Int. 2020;136:105359.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Chen Y, Leng Y, Liu X, Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut. 2020;257:113449.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review. Crit Rev Env Sci Tec. 2020;50:2175–222.

    CAS 
    Article 

    Google Scholar 

  • 48.

    Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Zhu D, An X-L, Chen Q-L, Yang X-R, Christie P, Ke X, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ Sci Technol. 2018;52:3081–90.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Zhu D, Delgado-Baquerizo M, Su J-Q, Ding J, Li H, Gillings MR, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ Sci Technol. 2021;55:7445–55.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 2016;10:1998–2009.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Liu C, Li H, Zhang Y, Si D, Chen Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour Technol. 2016;216:87–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Zhu D, Xiang Q, Yang X-R, Ke X, O’Connor P, Zhu Y-G. Trophic transfer of antibiotic resistance genes in a soil detritus food chain. Environ Sci Technol. 2019;53:7770–81.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018;6:90.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Chen Q, An X, Li H, Su J, Ma Y, Zhu Y-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92-93:1–10.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Li H, Zhou X-Y, Yang X-R, Zhu Y-G, Hong Y-W, Su J-Q. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci Total Environ. 2019;665:61–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:884–90.

    Article 
    CAS 

    Google Scholar 

  • 59.

    Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Brown LD, Cai TT, DasGupta A, Agresti A, Coull BA, Casella G, et al. Interval estimation for a binomial proportion—comment—rejoinder. Stat Sci. 2001;16:101–33.

    Article 

    Google Scholar 

  • 62.

    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.

    Article 

    Google Scholar 

  • 64.

    Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome. 2020;15:11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Frere L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ Pollut. 2018;242:614–25.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Parrish K, Fahrenfeld NL. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ Sci-Wat Res. 2019;5:495–505.

    CAS 

    Google Scholar 

  • 67.

    Hossain MR, Jiang M, Wei Q, Leff LG. Microplastic surface properties affect bacterial colonization in freshwater. J Basic Micro. 2019;59:54–61.

    CAS 
    Article 

    Google Scholar 

  • 68.

    Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Hesse E, O’Brien S, Luján AM, Sanders D, Bayer F, van Veen EM, et al. Stress causes interspecific facilitation within a compost community. Ecol Lett. 2021;00:1–9.

    Google Scholar 

  • 70.

    Kurtz ZD, Mueller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 71.

    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Adair KL, Wilson M, Bost A, Douglas AE. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 2018;12:959–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. Msystems. 2016;1:e00024–16.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Kwon J-H, Chang S, Hong SH, Shim WJ. Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives. Integr Environ Assess. 2017;13:494–9.

    Article 

    Google Scholar 

  • 75.

    Xiang Q, Zhu D, Chen Q-L, O’Connor P, Yang X-R, Qiao M, et al. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (similar to 2 mm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environ Sci Technol. 2019;53:12823–34.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Virsek MK, Lovsin MN, Koren S, Krzan A, Peterlin M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull. 2017;125:301–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Caruso G. Microplastics as vectors of contaminants. Mar Pollut Bull. 2019;146:921–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    MacLean RC, San Millan A. The evolution of antibiotic resistance. Science. 2019;365:1082–3.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ Pollut. 2018;237:460–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Zhang H, Wang J, Zhou B, Zhou Y, Dai Z, Zhou Q, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ Pollut. 2018;243:1550–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64.

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    2000 years of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize

    Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient