More stories

  • in

    A century of groundwater accumulation in Pakistan and northwest India

    Siebert, S., Portmann, F. T. & Döll, P. Global patterns of cropland use intensity. Remote Sens. 2, 1625–1643 (2010).Article 

    Google Scholar 
    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).Article 

    Google Scholar 
    Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL039401 (2009).Chen, J., Li, J., Zhang, Z. & Ni, S. Long-term groundwater variations in northwest India from satellite gravity measurements. Glob. Planet. Change 116, 130–138 (2014).Article 

    Google Scholar 
    Bhanja, S. N. & Mukherjee, A. In situ and satellite-based estimates of usable groundwater storage across India: implications for drinking water supply and food security. Adv. Water Resour. 126, 15–23 (2019).Article 

    Google Scholar 
    Tang, Y. et al. Reconstructing annual groundwater storage changes in a large-scale irrigation region using GRACE data and Budyko model. J. Hydrol. 551, 397–406 (2017).Article 

    Google Scholar 
    Ahmed, K., Shahid, S., Demirel, M. C., Nawaz, N. & Khan, N. The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeol. J. 27, 2485–2496 (2019).Article 

    Google Scholar 
    Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).Article 

    Google Scholar 
    MacDonald, A. M. et al. Groundwater quality and depletion in the Indo-Gangetic basin mapped from in situ observations. Nat. Geosci. 9, 762–766 (2016).Article 

    Google Scholar 
    Basharat, M., Umair Ali, S. & Azhar, A. H. Spatial variation in irrigation demand and supply across canal commands in Punjab: a real integrated water resources management challenge. Water Policy 16, 397–421 (2013).Article 

    Google Scholar 
    Irfan, M., Qadir, A., Ali, H., Jamil, N. & Ahmad, S. R. Vulnerability of Environmental Resources in Indus Basin after the Development of Irrigation System (Intechopen, 2019).Shah, T. Taming the Anarchy: Groundwater Governance in South Asia (Routledge, 2010).Tahir, Z. & Habib, Z. Land and Water Productivity: Trends Across Punjab Canal Commands Vol. 14 (IWMI, 2001).Van Dijk, W. M. et al. Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133319871941 (2020).Lapworth, D. J. et al. Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India. Geophys. Res. Lett. 42, 7554–7562 (2015).Article 

    Google Scholar 
    Raza, A., Latif, M. & Shakir, A. S. Long-term effectiveness of lining tertiary canals in the Indus basin of Pakistan. Irrig. Drain. 62, 16–24 (2013).Article 

    Google Scholar 
    Mukherji, A. Sustainable groundwater management in India needs a water–energy–food nexus approach. Appl. Econ. Perspect. Policy 44, 394–410 (2020).Panda, D. K. & Wahr, J. Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Water Resour. Res. 52, 135–149 (2016).Article 

    Google Scholar 
    Tripathi, A., Mishra, A. K. & Verma, G. Impact of preservation of subsoil water act on groundwater depletion: the case of Punjab, India. Environ. Manage. 58, 48–59 (2016).Article 

    Google Scholar 
    Watto, M. A., Mugera, A. W., Kingwell, R. & Saqab, M. M. Re-thinking the unimpeded tube-well growth under the depleting groundwater resources in the Punjab, Pakistan. Hydrogeol. J. 26, 2411–2425 (2018).Article 

    Google Scholar 
    Greenman, D. W., Bennett, G. D. & Swarzenski, W. V. Ground-Water Hydrology of the Punjab, West Pakistan, with Emphasis on Problems Caused by Canal Irrigation (US Government Printing Office, 1967).Jeevandas, A., Singh, R. & Kumar, R. Concerns of groundwater depletion and irrigation efficiency in Punjab agriculture: a micro-level study. Agric. Econ. Res. Rev. 21, 191–199 (2008).
    Google Scholar 
    Shekhar, S. et al. Modelling water levels of northwestern India in response to improved irrigation use efficiency. Sci. Rep. 10, 13452 (2020).Article 

    Google Scholar 
    Ground-Water Studies in the Ghaggar River basin in Punjab, Haryana and Rajasthan Final Technical Report Vol. 1 (UNDP, 1985).Long, D., Chen, X. & Scanlon, B. et al. Have GRACE satellites overestimated groundwater depletion in the northwest India aquifer? Sci. Rep. 6, 24398 (2016).Article 

    Google Scholar 
    Joshi, S. K., Gupta, S., Sinha, R., Densmore, A. L., Rai, S. P., Shekhar, S. & van Dijk, W. M. Strongly heterogeneous patterns of groundwater depletion in northwestern India. J. Hydrol. 598, 126492 (2021).Article 

    Google Scholar 
    Joshi, S. K. et al. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (Δ18O, Δ2H and 3H). J. Hydrol. 559, 835–847 (2018).Article 

    Google Scholar 
    O’Keeffe, J. et al. Isolating the impacts of anthropogenic water use within the hydrological regime of north India. Earth Surf. Process. Landf. 45, 1217–1228 (2019).Erenstein, O. Comparing water management in rice–wheat production systems in Haryana, India and Punjab, Pakistan. Agric. Water Manage. 96, 1799–1806 (2009).Article 

    Google Scholar 
    Zaveri, E. et al. Invisible water, visible impact: groundwater use and Indian agriculture under climate change. Environ. Res. Lett. 11, 084005 (2016).Article 

    Google Scholar 
    Shah, T. Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res. Lett. 4, 035005 (2009).Article 

    Google Scholar 
    Mishra, V. Long-term (1870–2018) drought reconstruction in context of surface water security in India. J. Hydrol. 580, 124228 (2020).Article 

    Google Scholar 
    Devanand, A., Huang, M., Ashfaq, M., Barik, B. & Ghosh, S. Choice of irrigation water management practice affects Indian summer monsoon rainfall and its extremes. Geophys. Res. Lett. 46, 9126–9135 (2019).Article 

    Google Scholar 
    Laghari, A., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).Article 

    Google Scholar 
    Wijngaard, R. R. et al. Climate change vs. socio-economic development: understanding the future South Asian water gap. Hydrol. Earth Syst. Sci. 22, 6297–6321 (2018).Article 

    Google Scholar 
    Butler, J. J., Bohling, G. C., Whittemore, D. O. & Wilson, B. B. A roadblock on the path to aquifer sustainability: underestimating the impact of pumping reductions. Environ. Res. Lett. 15, 014003 (2020).Article 

    Google Scholar 
    Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty-first century. Earths Future 7, 123–135 (2019).Article 

    Google Scholar 
    Khan, S., Rana, T., Gabriel, H. & Ullah, M. K. Hydrogeologic assessment of escalating groundwater exploitation in the Indus basin, Pakistan. Hydrogeol. J. 16, 1635–1654 (2008).Article 

    Google Scholar 
    Mekonnen, D., Siddiqi, A. & Ringler, C. Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan’s Indus basin irrigation system. Int. J. Water Resour. Dev. 32, 459–476 (2016).Article 

    Google Scholar 
    Report of the 5th Census of Minor Irrigation Schemes (Ministry of Water Resources, 2017).Qureshi, A. S., Tushaar, S. & Mujeeb, A. The Groundwater Economy of Pakistan (IWMI, 2003).Bennett, G. D. Analysis of aquifer tests in the Punjab region of West Pakistan (US Government Printing Office, 1967).Bonsor, H. C. et al. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeol. J. 25, 1377–1406 (2017).Article 

    Google Scholar 
    Lapworth, D. J. et al. Groundwater quality in the alluvial aquifer system of northwest India: new evidence of the extent of anthropogenic and geogenic contamination. Sci. Total Environ. 599–600, 1433–1444 (2017).Article 

    Google Scholar 
    Krishan, G. et al. Isotopes (δ18O, δD and 3H) variations in groundwater with emphasis on salinization in the State of Punjab, India. Sci. Total Environ. 148051 (2021).Punjab Development Statistics 2003 (Bureau of Statistics, 2003).Punjab Development Statistics 2019 (Bureau of Statistics, 2019).Statistical Abstract of Punjab 2019 (Economic and Statistical Organisation, 2019).Statistical Abstract of Haryana 2018–19 (Department of Economic and Statistical Analysis, 2020).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982).Article 

    Google Scholar 
    McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology Vol. 17, 179–183 (1993). More

  • in

    Author Correction: Storing frozen water to adapt to climate change

    In the version of this article initially published, there was a misstatement in the third paragraph, fourth sentence, now reading in part, “Now hundreds of farmers and villagers in this cold, arid desert use the ice stupas to save the water that flows in autumn,” where “hundreds” has replaced “dozens.”. In the fifth from last paragraph, “University of Applied Sciences in Lucerne” has replaced “….Life Sciences.”After this article was published, a highly relevant paper followed, which is now referenced to enhance understanding. It is cited in the eighth paragraph, following the quote “‘Seventy-eight percent of the water used is lost during the ice stupa formation,’ said Balasubramanian6,” and provided below. The changes have been made to the HTML and PDF versions of the article. More

  • in

    More rain, less often

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Water use in a changing world

    Estimating future economic and domestic water use is difficult due to uncertain changes in climate and socioeconomic conditions. Now, research estimates future water use in the United States could decrease or more than double by 2070 under plausible socioeconomic and climate scenarios.Between 1980 and 2015, the United States added more than 82 million people (34% increase), generated 1,786 billion kWh more electricity annually (78% increase), and irrigated 2.4 million more hectares of cropland each year (10% increase). Yet, surprisingly, during this same period, total annual water withdrawals decreased by nearly 150 billion m3 (25% reduction)1,2. Given the importance of water in meeting our basic needs and supporting economic activity, long-term forecasts of societal water use are required to ensure that enough water is available to meet future water needs. However, uncertainties in future climate and socioeconomic conditions make it difficult to predict future water use. Recent research reported in Earth’s Future by Warziniack and colleagues3 introduces a novel approach to project freshwater use in the United Sates through 2070. They find that water consumption could decrease by as much as 8% or increase up to 235% under different socioeconomic and climate scenarios. More

  • in

    Whole-system analysis reveals high greenhouse-gas emissions from citywide sanitation in Kampala, Uganda

    In order to maximise the potential for comparability with established global estimates GHG emission rates were built up for each emission category from established IPCC methodology wherever possible. All emissions were converted to carbon dioxide equivalent (CO2e) using the 100-year global warming potential (GWP) of each gas (34 for methane, 298 for nitrous oxide)18.Methane emission factor for typical sanitation containment and treatment systemsThe IPCC estimates methane emissions for sanitation systems from chemical oxygen demand based on Eq. 1. Emission factors are derived from Eq. 2, summed for the population segment using each type of sanitation system.$${{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{4}={sum }^{}Ptimes {{{{{rm{COD}}}}}}times P{R}_{{{{{{rm{COD}}}}}}}times {{{{{rm{EF}}}}}}$$
    (1)
    where; CH4 = total methane emissions from a given element of the system (kgCH4/year), P = population using the system, COD = chemical oxygen demand from the excreta of each person (kg COD/cap/year), PRCOD = percentage reduction of chemical oxygen demand whilst in situ (0–1), EF = emission factor for each containment technology (kgCH4/kg COD)$$E{F}_{c}={B}_{0}times {{{{{rm{MC}}}}}}{F}_{c}$$
    (2)
    where; EFC = emission factor for each containment technology, B0 = maximum methane-producing capacity kgCH4/kg COD, MCFC = methane correction factor for each containment technologyWe used Eqs. 1 and 2 to model estimates of direct emissions from typical sanitation systems based on updated methane correction factors (MCFc). MCFc varies from 0 (for a fully aerobic environment) to 1 (for a fully anaerobic environment)19,20. We developed new models for the types of latrines commonly found in Kampala based on field data provided by Nakagiri et al21. As inputs, we assumed a typical value for the COD of raw feaces (upstream of the toilet) of 71 kg COD/capita/day22, and a typical value for PR of 70%22,23. The value of B0 is 0.25 kg CH4/kg COD12.The methane-forming reaction, methanogenesis, occurs under obligate anaerobic conditions. A low dissolved oxygen (DO) level is a good indicator for higher rates of methane emission. DO falls when the loading is high, and correspondingly when dilution rates are low. DO will also tend to be lower at depth in static flow systems (i.e., within pit latrines or stagnant water bodies)21. DO also appears to fall in dry seasons and rise during the rains24. Consistent with DO, low oxidation reduction potential (ORP) of less than +50 mV indicates anoxic condition. Further, low ORP between −199 and −51 mV indicates acidic environment, ideal for methane formation21. Almost all pit latrines surveyed by Nakagiri et al.21 were within low DO and acidic ORP. In sludges, within pits and tanks, or in wastewater and faecal sludge treatment plants, higher moisture content and acidic environment are associated with enhanced methanogenesis. Thus, lined/sealed containers, waterlogged toilets, water borne piped sewerage and anaerobic, high load or saturated treatment processes are all likely to be associated with higher methane emissions.To establish values for MCFc, the physical characteristics of sludge inside containers are required, particularly the extent of aerobic and anaerobic conditions at different depths (see also Supplementary Method 1). Nakagiri et al.21 examined the physical properties of sludge cores taken from a number of pits in Kampala. These data were combined with citywide sanitation data from Musabe25 to produce emissions profiles for a set of ‘typical types’ of containers in the city using the IPCC method11,13. Details of the determination of MCFc and EF for methane are in Supplementary Tables 1, 3 with a summary of the results shown in Table 2.Methane emissions from treatment plants were calculated using a modified IPCC formula that is based on Reid et al.20$${{{{{{rm{CH}}}}}}}_{4}=Sigma [{{{{{rm{U}}}}}},{{{{{rm{x}}}}}},{{{{{rm{EF}}}}}},{{{{{rm{x}}}}}}({{{{{rm{TOW}}}}}}){{{{{rm{x}}}}}}(1{-}({{{{{rm{L}}}}}}+{{{{{rm{S}}}}}}+{{{{{rm{R}}}}}}))]$$
    (3)
    where methane emissions are expressed in kg CH4/year and are summed for each treatment plant. U = effective population (the population equivalent of excreta from direct inflow to the process plus effluent from previous, usually drying, process), EF = emission factors (kg CH4/kg COD) = B0 × MCF, B0 = Maximum methane producing capacity kg CH4/kg COD by process in the local context, MCF = methane correction factor, TOW = total organics in wastewater per year (kg COD/ year), L = proportion of organic component removed as effluent, S = proportion of organic component removed as sludge, R = proportion of methane recovered through capture processesDetailed calculations are presented in the Supplementary Information.Nitrous-oxide emission factors for typical sanitation containment and treatment systemsNitrous oxide is produced during both nitrification and denitrification. Nitrification occurs at the surface facilitating the escape of nitrous oxide gas, and is therefore the more significant process. During denitrification nitrous oxide formed in an anaerobic zone may be dissolved into a liquid phase or converted to dinitrogen (N2) before it can escape as a gas26. The rate of nitrous oxide emission is therefore dependent on the extent to which aerobic conditions exist at the surface and anaerobic conditions below the surface. These can be impacted by both system design and operational conditions.Nitrous oxide emissions are calculated based on Eq. 4 summed for the population segment using each type of sanitation system11,13,21:$${{{{{{rm{N}}}}}}}_{2}{{{{{rm{O}}}}}}={sum }^{}Ptimes {N}_{I}times {{{{{rm{EF}}}}}}times frac{44}{28}$$
    (4)
    where N2O = total N2O emissions (kg N2O/year), P = population using each sanitation facility (cap), NI= nitrogen influent from urine and faeces (kg N/cap/year), EF = emission factor for each sanitation facility (kg N2O-N/kg N), (frac{44}{28}) = conversion factor for N2O–N into kg N2O.For containment, we used field-study-derived data21,25 to generate modelled estimates for emission factors. We assumed a production of 4.672 kg N/capita /year in faeces and urine combined for Kampala (based on a reported value of 12.8 g/cap/day)27. For treatment processes we used the standard emission factors provided by IPCC11,13. Details of the resultant emission factors for nitrous oxide are in the Supplementary Tables 2, 4 with a summary of the results shown in Table 3.Operational emissions (trucking)Operational emissions were calculated on the basis of fuel use for trucking faecal sludge (see also Supplementary Method 4). We used data from truck operations to estimate typical transport distances28 and combined this with estimate of emissions factors for typical trucks, based on work conducted on the transport sector in South Africa29. The emissions from faecal sludge trucking were calculated using Eq. 5 summed for all known trucks operating in Kampala28.$${{{{{rm{C}}}}}}{{{{{{rm{O}}}}}}}_{2,T}={sum }^{}{N}_{T}times {{{{{rm{DT}}}}}}times E{F}_{V}$$
    (5)
    where CO2,T = total CO2 emissions from the transport of FS (kgCO2/year), NT = number trips made per year, DT = average distance travelled per trip (vehicle km), EFV = emission factor for each type of vehicle within the FSM fleet (kgCO2/vkm)Data on truck journeys are summarised in Supplementary Table 8, which also shows the resultant total CO2 emissions obtained by applying Eq. 5.Operational emissions (pumping and aerating wastewater in sewers and treatment plants)Emissions associated with electricity or fuel usage (e.g., diesel) were calculated using Eqs. 6 and  7 for electricity and diesel respectively summed for each pumping station and/or treatment plant.$${{{{{rm{C}}}}}}{{{{{{rm{O}}}}}}}_{2,el}={sum }^{}{C}_{el}times E{F}_{el}$$
    (6)
    where CO2,el = CO2 emissions associated with electricity usage (kgCO2/year), Cel = electricity consumption (MWh/year), EFel = emission factor (tCO2e/MWh/year)$${{{{{rm{C}}}}}}{{{{{{rm{O}}}}}}}_{2d}={sum }^{}{C}_{d}times E{F}_{d}$$
    (7)
    where CO2d = CO2 emissions associated with diesel usage (kgCO2/year), Cd = diesel consumption (l/year), EFd = emission factor (kg CO2e/l diesel)We used data on electricity and fuel usage in sewer and wastewater treatment operations and applied Eqs. 6 and 7 to obtain total operational emissions for wastewater operations. Supplementary Method 7 provides more details in the method and the results are broken down on Supplementary Table 14.Embedded carbon in construction materialWe used analytical estimation to model emissions associated with embedded carbon. Full details of the approach are in Supplementary Method 2 for containment, 3 for sewerage, and 6 for treatment plants. Quantities of materials in sanitation structures (toilets, sewers, treatment plants etc.) were estimated based on standard designs and information on the design of toilets in Kampala from Nakagiri, et al.30. Standard emission factors were applied31,32,33. Typical estimates of infrastructure design life were used to create an annual value. A summary of the emission factors used is shown in Supplementary Table 5 and details of the system-wise calculations are in Supplementary Tables 6, 7, 13.Sanitation system in KampalaIn order to create the emission profile for the city sanitation system of Kampala, we used data from Nakagiri et al.21, Kimuli et al.24, Musabe25, Schoebitz et al.34, McConville et al.35 and Lwasa17. The section below draws on all these sources.According to the most recent estimate of excreta flows in Kampala, close to half ends up in the environment untreated34. Around one fifth of the population have sanitation connected to sewers; around a third of wastewater is treated, while two-thirds end up in drains or other water bodies. The remaining population primarily use onsite sanitation systems that are either unlined or lined pit latrines, or so-called septic tanks, many of which are shared. Two-thirds of the population, and many of the people who rely on onsite systems, live in informal low income settlement in low lying areas with high water table, and it is widely reported that most onsite systems are regularly inundated with surface water or flooded with ground water. Of the excreta collected in onsite sanitation systems, about one third remains safely stored in pit latrines and one third are stored in tanks and pits that are located in areas where there is significant risk of groundwater pollution. The remaining third are collected in tanks and pits that are emptied on average once every three years. During flood events there is evidence that many toilets located near to drains are flushed out, using a ‘foot valve’ or vertical gate at the bottom of the tank that can be lifted manually. A graphical summary of the sanitation system is shown in Fig. 1.There are two major treatment plants, Lubigi and Bugolobi. The Lubigi plant comprises a series of waste stabilization ponds (anaerobic followed by facultative ponds) followed by drying beds for wastewater sludge. Faecal sludge from onsite sanitation is delivered to settling/thickening tanks; liquids are co-treated with wastewater in the stabilisation ponds, and solids in the drying beds. The faecal sludge treatment plant was reportedly already at design capacity of 400 m3 faecal sludge per day within the first months of operation28. Lubigi receives 3,000 m3 wastewater daily out of the 5,000 m3 design capacity35.Bugolobi wastewater treatment plant consists of settling tanks with supernatant going to trickling filters, solids going to digesters (if operational) followed by drying beds28. While Bugolobi was not designed to co-treat faecal sludge, it nonetheless receives about 200 m3 faecal sludge per day. The plant receives 13,000 m3 wastewater daily out of the 32,000 m3 design capacity35.The remaining three wastewater treatment plants in Kampala, Naalya, Ntinda and Bugolobi Flats have negligible capacity of 1,175 m3/d14, approximately 3% of the capacity of Lubigi and Bugolobi combined (37000 m3). Based on the available data we therefore assume that of the excreta that are treated, 80 percent of wastewater and 33 percent of faecal sludge are treated at Bugolobi with the balance treated at Lubigi.Emissions profileTo produce an emission profile across the entire system, the unit emissions rates calculated as described above were mapped onto the actual sanitation service profile for Kampala using the excreta-flow diagram or SFD for the city34. The process is described in Supplementary Methods 8. Peal et al.16 note that significant system failures occur in typical urban sanitation systems in Subsaharan Africa. This confirms the findings of Schoebitz et al.34. Many system failures result in discharges to the open stormwater drainage network. Because the drains are sometimes dry we used the mean of the emission rates for untreated waste discharged to open drains in the wet and dry seasons to estimate methane and nitrous oxide emissions caused by flows to open drains (see ‘No facility’ emission rates in Supplementary Table 4). We assumed that all illegal dumping and discharges upstream of the treatment plants went to open drains. However, failures at containment were divided. Shoebitz et al. report that most ‘failed’ containment results in infiltration to the groundwater that is assumed to have negligible impact on emissions34. A quarter of failures at containment are assumed to result in pits and tanks being flushed out to drains during flood events. More

  • in

    How to save water: plumbing can be changed but people can’t

    .readcube-buybox { display: none !important;}

    Rather than trying to change people’s behaviour, the key to reducing water waste might lie in improved plumbing1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00947-1

    ReferencesAgarwal, S., Araral, E., Fan, M., Qin, Y. & Zheng, H. Nature Hum. Behav. https://doi.org/10.1038/s41562-022-01320-y (2022).Article 

    Google Scholar 
    Download references

    Subjects

    Water resources

    Latest on:

    Water resources

    Russia is weaponizing water in its invasion of Ukraine
    Correspondence 29 MAR 22

    Gran Turismo champion, reimagined urine — the week in infographics
    News 15 FEB 22

    The urine revolution: how recycling pee could help to save the world
    News Feature 09 FEB 22

    Jobs

    5 wiss. Mitarbeiter/innen / Doktoranden/-innen (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Research Associate / Postdoc in Smart Microscopy (m/f/x)
    “Smart Optical Tweezers To Probe Biomolecular Condensates”

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Research Associate / Postdoc (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Group Leader position in organic synthesis

    Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague)
    Prague, Czech Republic More

  • in

    Russia is weaponizing water in its invasion of Ukraine

    CORRESPONDENCE
    29 March 2022

    Russia is weaponizing water in its invasion of Ukraine

    Hussam Hussein

    0

    Hussam Hussein

    University of Oxford, Oxford, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Water supplies are increasingly being targeted during armed conflicts. Since it invaded Ukraine last month, Russia has cut off the water supply to the besieged city of Mariupol to drive it to surrender. It has also destroyed a canal dam that Ukraine constructed in 2014 to control the water supply into Crimea after Russia annexed the peninsula.Water resources and infrastructure have been attacked in other conflicts. In 2014, the Islamist terrorist group ISIS cut off water to Mosul in northern Iraq and threatened to use the dam there to flood Baghdad. Also in 2014, Syrian government forces targeted the country’s ISIS-controlled water plant in Raqqa and, in 2016, they attacked the Fijeh Spring in the besieged Wadi Barada valley (M. Daoudy Int. Affairs 96, 1347–1366; 2020).It is imperative that international humanitarian law be respected in relation to fresh-water supplies. The Geneva List of Principles on the Protection of Water Infrastructure sets out international rules for application during armed conflicts and makes valuable recommendations that go beyond existing law (see go.nature.com/3nnznww). Attempts to override these protective mechanisms should not be tolerated.

    Nature 603, 793 (2022)
    doi: https://doi.org/10.1038/d41586-022-00865-2

    Competing Interests
    The author declares no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Water resources

    Politics

    Latest on:

    Water resources

    Gran Turismo champion, reimagined urine — the week in infographics
    News 15 FEB 22

    The urine revolution: how recycling pee could help to save the world
    News Feature 09 FEB 22

    ‘Sky river’ brought Iran deadly floods — but also welcome water
    Research Highlight 08 DEC 21

    Politics

    The future of research collaborations involving Russia
    Career News 18 MAR 22

    Scientists struggle to probe COVID’s origins amid sparse data from China
    News 17 MAR 22

    The geopolitics of fossil fuels and renewables reshape the world
    World View 11 MAR 22

    Jobs

    Co-Leader, Cancer Biology and Evolution Program

    H. Lee Moffitt Cancer Center & Research Institute
    Tampa, FL, United States

    Postdoctoral Position

    Schepens Eye Research Institute, MEEI
    Boston, MA, United States

    Assistant Professor in Medical Science

    Karolinska Institutet (KI)
    Stokholm, Sweden

    Postdoctoral fellowship in RNA biology and transcription in the Gregersen Group at Department of Cellular and Molecular Medicine (ICMM)

    University of Copenhagen (UCPH)
    Copenhagen, Denmark More

  • in

    Pantanal port licence would threaten the world’s largest tropical wetland

    Conselho Estadual de Meio Ambiente do Estado de Mato Grosso – CONSEMA. 1ª Reunião Ordinária do CONSEMA, https://youtu.be/yg_uPlIZu1o (Secretaria Estadual do Meio Ambiente, Cuiabá, Mato Grosso, Brazil, 2022).Departamento Nacional de Infraestrutura de Transportes – DNIT. DNIT inicia serviço de dragagem no Rio Paraguai, https://bit.ly/3sx94Qf (Departamento Nacional de Infraestrutura de Transportes, Brasília, DF, Brazil, 2021).Universidade Federal do Paraná – UFPR. Relatório do Estudo de Viabilidade Técnica, Econômica e Ambiental da Hidrovia do Rio Paraguai, https://itti.org.br/relatorios-tecnicos/ (Instituto Tecnológico de Transportes e Infraestrutura, Universidade Federal do Paraná, Curitiba, Paraná, Brazil, 2015).Hamilton, S. K. Regul. Rivers 15, 289–299 (1999).Article 

    Google Scholar 
    Sousa Junior, W. C., Gonçalves, D. A., Ribeiro, T. C. L. & Scur, M. C. Nova Hidrovia Paraguai-Paraná: Uma Análise Abrangente, https://bit.ly/34rQDEL (Wetlands International and Mupan, Campo Grande, Mato Grosso do Sul, Brazil, 2019).Scaloppe, L. A. E. Posicionamento público do Ministério Público do Estado de Mato Grosso ao pleno do Conselho Estadual de Meio Ambiente (Consema) e à sociedade. (Ministério Público do Estado de Mato Grosso, Cuiabá, Mato Grosso, Brazil, 2022).Secretaria Estadual do Meio Ambiente do Estado de Mato Grosso. Parecer Técnico N.º 152841 / CLEIA / SUIMIS / 2021, https://bit.ly/3oFz22S (Secretaria Estadual do Meio Ambiente, Cuiabá, Mato Grosso, Brazil, 2021).Ministério do Meio Ambiente, Comitê Nacional de Zonas Úmidas. Recomendação CNZU n. 10, de 22 de Janeiro de 2018, https://bit.ly/3oGeSpl (Ministério do Meio Ambiente, Brasília, DF, Brazil, 2018).Coll, L. Porto Recebe Licença Prévia para Operar no Pantanal e Pode Trazer mais Impactos à Região, https://bit.ly/3oIfvif (Le Monde Diplomatique Brasil, 2022).Lideranças Partidárias. Projeto de lei nº 3/2022, https://bit.ly/34rQFMT (Assembleia Legislativa do Estado de Mato Grosso, Cuiabá, Mato Grosso, Brazil, 2022).Ministério do Meio Ambiente, Comitê Nacional de Zonas Úmidas. Recomendação CNZU n. 11, de 22 de Janeiro de 2018, https://bit.ly/3oGeSpl (Ministério do Meio Ambiente, Brasília, DF, Brazil, 2018).Ruaro, R., Ferrante, L. & Fearnside, P. M. Science 372, 1049–1050 (2021).Article 

    Google Scholar 
    MapBiomas. A Dinâmica da Superfície de Água do Território Brasileiro, https://mapbiomas.org (MapBiomas, 2021).Libonati, R., DaCamara, C. C., Peres, L. F., Sander de Carvalho, L. A. & Garcia, L. C. Nature 588, 217–219 (2020).CAS 
    Article 

    Google Scholar 
    Tomas, W. M. et al. Sci. Rep. 11, 23547 (2021).CAS 
    Article 

    Google Scholar 
    Mitsch, W. J. et al. Landsc. Ecol 28, 583–597 (2013).Article 

    Google Scholar 
    Gottgens, J. F. et al. Bioscience 51, 301–308 (2001).Article 

    Google Scholar  More