More stories

  • in

    Two first-year students named Rise Global Winners for 2022

    In 2019, former Google CEO Eric Schmidt and his wife, Wendy, launched a $1 billion philanthropic commitment to identify global talent. Part of that effort is the Rise initiative, which selects 100 young scholars, ages 15-17, from around the world who show unusual promise and a drive to serve others. This year’s cohort of 100 Rise Global Winners includes two MIT first-year students, Jacqueline Prawira and Safiya Sankari.

    Rise intentionally targets younger-aged students and focuses on identifying what the program terms “hidden brilliance” in any form, anywhere in the world, whether it be in a high school or a refugee camp. Another defining aspect of the program is that Rise winners receive sustained support — not just in secondary school, but throughout their lives.

    “We believe that the answers to the world’s toughest problems lie in the imagination of the world’s brightest minds,” says Eric Braverman, CEO of Schmidt Futures, which manages Rise along with the Rhodes Trust. “Rise is an integral part of our mission to create the best, largest, and most enduring pipeline of exceptional talent globally and match it to opportunities to serve others for life.”

    The Rise program creates this enduring pipeline by providing a lifetime of benefits, including funding, programming, and mentoring opportunities. These resources can be tailored to each person as they evolve throughout their career. In addition to a four-year college scholarship, winners receive mentoring and career services; networking opportunities with other Rise recipients and partner organizations; technical equipment such as laptops or tablets; courses on topics like leadership and human-centered design; and opportunities to apply for graduate scholarships and for funding throughout their careers to support their innovative ideas, such as grants or seed money to start a social enterprise.

    Prawira and Sankari’s winning service projects focus on global sustainability and global medical access, respectively. Prawira invented a way to use upcycled fish-scale waste to absorb heavy metals in wastewater. She first started experimenting with fish-scale waste in middle school to try to find a bio-based alternative to plastic. More recently, she discovered that the calcium salts and collagen in fish scales can absorb up to 82 percent of heavy metals from water, and 91 percent if an electric current is passed through the water. Her work has global implications for treating contaminated water at wastewater plants and in developing countries.

    Prawiri published her research in 2021 and has won awards from the U.S. Environmental Protection Agency and several other organizations. She’s planning to major in Course 3 (materials science and engineering), perhaps with an environmentally related minor. “I believe that sustainability and solving environmental problems requires a multifaced approach,” she says. “Creating greener materials for use in our daily lives will have a major impact in solving current environmental issues.”

    For Sankari’s service project, she developed an algorithm to analyze data from electronic nano-sensor devices, or e-noses, which can detect certain diseases from a patient’s breath. The devices are calibrated to detect volatile organic compound biosignatures that are indicative of diseases like diabetes and cancer. “E-nose disease detection is much faster and cheaper than traditional methods of diagnosis, making medical care more accessible to many,” she explains. The Python-based algorithm she created can translate raw data from e-noses into a result that the user can read.

    Sankari is a lifetime member of the American Junior Academy of Science and has been a finalist in several prestigious science competitions. She is considering a major in Course 6-7 (computer science and molecular biology) at MIT and hopes to continue to explore the intersection between nanotechnology and medicine.

    While the 2022 Rise recipients share a desire to tackle some of the world’s most intractable problems, their ideas and interests, as reflected by their service projects, are broad, innovative, and diverse. A winner from Belarus used bioinformatics to predict the molecular effect of a potential Alzheimer’s drug. A Romanian student created a magazine that aims to promote acceptance of transgender bodies. A Vietnamese teen created a prototype of a toothbrush that uses a nano chip to detect cancerous cells in saliva. And a recipient from the United States designed modular, tiny homes for the unhoused that are affordable and sustainable, as an alternative to homeless shelters.

    This year’s winners were selected from over 13,000 applicants from 47 countries, from Azerbaijan and Burkina Faso to Lebanon and Paraguay. The selection process includes group interviews, peer and expert review of each applicant’s service project, and formal talent assessments. More

  • in

    Finding community in high-energy-density physics

    Skylar Dannhoff knew one thing: She did not want to be working alone.

    As an undergraduate at Case Western Reserve University, she had committed to a senior project that often felt like solitary lab work, a feeling heightened by the pandemic. Though it was an enriching experience, she was determined to find a graduate school environment that would foster community, one “with lots of people, lots of collaboration; where it’s impossible to work until 3 a.m. without anyone noticing.” A unique group at the Plasma Science and Fusion Center (PSFC) looked promising: the High-Energy-Density Physics (HEDP) division, a lead partner in the National Nuclear Security Administration’s Center for Excellence at MIT.

    “It was a shot in the dark, just more of a whim than anything,” she says of her request to join HEDP on her application to MIT’s Department of Physics. “And then, somehow, they reached out to me. I told them I’m willing to learn about plasma. I didn’t know anything about it.”

    What she did know was that the HEDP group collaborates with other U.S. laboratories on an approach to creating fusion energy known as inertial confinement fusion (ICF). One version of the technique, known as direct-drive ICF, aims multiple laser beams symmetrically onto a spherical capsule filled with nuclear fuel. The other, indirect-drive ICF, instead aims multiple lasers beams into a gold cylindrical cavity called a hohlraum, within which the spherical fuel capsule is positioned. The laser beams are configured to hit the inner hohlraum wall, generating a “bath” of X-rays, which in turn compress the fuel capsule.

    Imploding the capsule generates intense fusion energy within a tiny fraction of a second (an order of tens of picoseconds). In August 2021, the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) used this method to produce an historic fusion yield of 1.3 megajoules, putting researchers within reach of “ignition,” the point where the self-sustained fusion burn spreads into the surrounding fuel, leading to a high fusion-energy gain.  

    Joining the group just a month before this long-sought success, Dannhoff was impressed more with the response of her new teammates and the ICF community than with the scientific milestone. “I got a better appreciation for people who had spent their entire careers working on this project, just chugging along doing their best, ignoring the naysayers. I was excited for the people.”

    Dannhoff is now working toward extending the success of NIF and other ICF experiments, like the OMEGA laser at the University of Rochester’s Laboratory for Laser Energetics. Under the supervision of Senior Research Scientist Chikang Li, she is studying what happens to the flow of plasma within the hohlraum cavity during indirect ICF experiments, particularly for hohlraums with inner-wall aerogel foam linings. Experiments, over the last decade, have shown just how excruciatingly precise the symmetry in ICF targets must be. The more symmetric the X-ray drive, the more effective the implosion, and it is possible that these foam linings will improve the X-ray symmetry and drive efficiency.

    Dannhoff is specifically interested in studying the behavior of silicon and tantalum-based foam liners. She is as concerned with the challenges of the people at General Atomics (GA) and LLNL who are creating these targets as she is with the scientific outcome.

    “I just had a meeting with GA yesterday,” she notes. “And it’s a really tricky process. It’s kind of pushing the boundaries of what is doable at the moment. I got a much better sense of how demanding this project is for them, how much we’re asking of them.”

    What excites Dannhoff is the teamwork she observes, both at MIT and between ICF institutions around the United States. With roughly 10 graduate students and postdocs down the hall, each with an assigned lead role in lab management, she knows she can consult an expert on almost any question. And collaborators across the country are just an email away. “Any information that people can give you, they will give you, and usually very freely,” she notes. “Everyone just wants to see this work.”

    That Dannhoff is a natural team player is also evidenced in her hobbies. A hockey goalie, she prioritizes playing with MIT’s intramural teams, “because goalies are a little hard to come by. I just play with whoever needs a goalie on that night, and it’s a lot of fun.”

    She is also a member of the radio community, a fellowship she first embraced at Case Western — a moment she describes as a turning point in her life. “I literally don’t know who I would be today if I hadn’t figured out radio is something I’m interested in,” she admits. The MIT Radio Society provided the perfect landing pad for her arrival in Cambridge, full of the kinds of supportive, interesting, knowledgeable students she had befriended as an undergraduate. She credits radio with helping her realize that she could make her greatest contributions to science by focusing on engineering.

    Danhoff gets philosophical as she marvels at the invisible waves that surround us.

    “Not just radio waves: every wave,” she asserts. “The voice is the everywhere. Music, signal, space phenomena: it’s always around. And all we have to do is make the right little device and have the right circuit elements put in the right order to unmix and mix the signals and amplify them. And bada-bing, bada-boom, we’re talking with the universe.”

    “Maybe that epitomizes physics to me,” she adds. “We’re trying to listen to the universe, and it’s talking to us. We just have to come up with the right tools and hear what it’s trying to say.” More

  • in

    MIT student club Engineers Without Borders works with local village in Tanzania

    Four students from the MIT club Engineers Without Borders (EWB) spent part of their summer in Tanzania to begin assessment work for a health and sanitation project that will benefit the entire village, and an irrigated garden for the Mkutani Primary School.

    The club has been working with the Boston Professional Chapter of Engineers Without Borders (EWB-BPC) since 2019. The Boston chapter finds projects in underserved communities in the developing world and helped connect the MIT students with local government and school officials.

    Juniors Fiona Duong, female health and sanitation team lead, and Lai Wa Chu, irrigation team lead, spent two weeks over the summer in Mkutani conducting research for their projects. Chu was faced with finding more water supplies and a way to get water from the nearby river to the school to use in the gardens they were planting. Duong was charged with assessing the needs of the people who visit The Mkutani Dispensary, which serves as a local medical clinic. Juniors Hung Huynh, club president, and Vivian Cheng, student advisor, also made the trip to work on the projects.

    Health and sanitation project

    Duong looked into ways to help pregnant women with privacy issues as the facility they give birth in — The Mkutani Dispensary — is very small, with just two beds, and is in need of repairs and upgrades. Before leaving Cambridge, Duong led FaceTime meetings with government officials and facilities managers in the village. Once on the ground, she began collecting information and conducted focus groups with the local women and other constituents. She learned that one in three women were not giving birth in the dispensary due to privacy concerns and the lack of modern equipment needed for high-risk pregnancies.

    “The women said that the most pressing need there was water. The women were expected to bring their own water to their deliveries. The rain-catching system there was not enough to fulfill their needs and the river water wasn’t clean. When in labor, they relied on others to gather it and bring it to the dispensary by bike,” Duong says. “With broken windows, the dispensary did not allow for privacy or sanitary conditions.”

    Duong will also analyze the data she collected and share it with others before more MIT students head to Mkutani next summer.

    Farming, sustainability, and irrigation projectBefore heading to Mkutani, Chu conducted research regarding irrigation methods and water collection methods. She confirmed that the river water still contained E.coli and advised the teachers that it would need to be boiled or placed in the sun for a few hours before it could be used. Her technical background in fluid dynamics was helpful for the project.

    “We also found that there was a need for supplemental food for the school, as many children lived too far away to walk home for lunch. The headmaster reached out to us about building the garden, as the garden provides supplemental fruit and vegetables for many of the 600 students to eat. They needed water from the river that was quite far away from the school. We looked at ways to get the water to the garden,” Chu says.

    The group is considering conducting an ecological survey of the area to see if there is another source of water so they could drill another borehole. They will complete their analysis and then decide the best solution to implement.

    “Watching the whole team’s hard work pay off when the travel team got to Mkutani was so amazing,” says second-year student Maria Hernandez, club internal relations chair. “Now, we’re ready to get to work again so we can go back next year. I love being a part of Engineers Without Borders because it’s such a unique way to apply technical skills outside of the classroom and see the impact you make on the community. It’s a beautiful project that truly impacts so many people, and I can’t wait to go back to Mkutani next year.”

    Both Duong and Chu hope they’ll return to the school and the dispensary in summer 2023 to work on the implementation phase of their projects. “This project is one of the reasons I came to MIT. I wanted to work on a social impact project to help improve the world,” Chu says.

    “I hope to go back next summer and implement the project,” adds Duong. “If I do, we’ll go during the two most crucial weeks of the project — after the contractors have started the repair work on the dispensary, so we can see how things are going and then help with anything else related to the project.”

    Duong and Chu said students don’t have to be engineers to help with the EWB’s work — any MIT student interested in joining the club may do so. Both agree that fundraising is a priority, but there are numerous other roles students can help with.

    “MIT students shouldn’t be afraid to just dive right in. There’s a lot that needs to be done there, and even if you don’t have experience in a certain area, don’t let that be a barrier. It’s very rewarding work and it’s also great to get international work experience,” Duong says.

    Chu added, “The project may not seem flashy now, but the rewards are great. Students will get new technical skills and get to experience a new culture as well.” More

  • in

    MADMEC winner identifies sustainable greenhouse-cooling materials

    The winners of this year’s MADMEC competition identified a class of materials that could offer a more efficient way to keep greenhouses cool.

    After Covid-19 put the materials science competition on pause for two years, on Tuesday SmartClime, a team made up of three MIT graduate students, took home the first place, $10,000 prize.

    The team showed that a type of material that changes color in response to an electric voltage could reduce energy usage and save money if coated onto the panes of glass in greenhouses.

    “This project came out of our love of gardening,” said SmartClime team member and PhD candidate Isabella Caruso in the winning presentation. “Greenhouses let you grow things year-round, even in New England, but even greenhouse pros need to use heating furnaces in the winter and ventilation in the summer. All of that can be very labor- and energy-intensive.”

    Current options to keep greenhouses cool include traditional air conditioning units, venting and fans, and simple cloth. To develop a better solution, the team looked through scientific papers to find materials with the right climate control properties.

    Two classes of materials that looked promising were thermochromic coatings, which change color based on temperature, and electrochromic solutions, which change color based on electric voltage.

    Creating both the thermochromic and electrochromic solutions required the team to assemble nanoparticles and spin-coat them onto glass substrates. In lab tests, the electrochromic material performed well, turning a deep bluish hue to reduce the heat coming into the greenhouse while also letting in enough light for plants. Specifically, the electrochromic cell kept its test box about 1 to 3 degrees Celsius cooler than the test box coated in regular glass.

    The team estimated that greenhouse owners could make back the added costs of the electrochromic paneling through savings on other climate-control measures. Additional benefits of using the material include reducing heat-related crop losses, increasing crop yields, and reducing water requirements.

    Hosted by MIT’s Department of Materials Science and Engineering (DMSE), the competition was the culmination of team projects that began last spring and included a series of design challenges throughout the summer. Each team received guidance, access to equipment and labs, and up to $1,000 in funding to build and test their prototypes.

    “It’s great to be back and to have everyone here in person,” Mike Tarkanian, a senior lecturer in DMSE and coordinator of MADMEC, said at the event. “I’ve enjoyed getting back to normal, doing the design challenges over the summer and celebrating with everyone here today.”

    The second-place prize was split between YarnZ, which identified a nanofiber yarn that is more sustainable than traditional textile fibers, and WasteAway, which has developed a waste bin monitoring device that can identify the types of items thrown into trash and recycling bins and flag misplaced items.

    YarnZ (which stands for Yarns Are Really NanofiberZ), developed a nanofiber yarn that is more degradable than traditional microfiber yarns without sacrificing on performance.

    A large chunk of the waste and emissions in the clothing industry come from polyester, a slow-degrading polymer that requires an energy-intensive melt spinning process before it’s spun into the fibers of our clothes.

    “The biggest thing I want to impress upon you today is that the textile industry is a major greenhouse gas-producing entity and also produces a huge amount of waste,” YarnZ member and PhD candidate Natalie Mamrol said in the presentation.

    To replace polyester, the team developed a continuous process in which a type of nanofiber film collects in a water bath before being twisted into yarn. In subsequent tests, the nanofiber-based yarn degraded more quicky than traditional microfibers and showed comparable durability. YarnZ believes this early data should encourage others to explore nanofibers as a viable replacement in the clothing industry and to invest in scaling the approach for industrial settings.

    WasteAway’s system includes a camera that sits on top of trash bins and uses artificial intelligence to recognize items that people throw away.

    Of the 300 million tons of waste generated in the U.S. each year, more than half ends up in landfills. A lot of that waste could have been composted or recycled but was misplaced during disposal.

    “When someone throws something into the bin, our sensor detects the motion and captures an image,” explains WasteAway’s Melissa Stok, an undergraduate at MIT. “Those images are then processed by our machine-learning algorithm to find contamination.”

    Each device costs less than $30, and the team says that cost could go down as parts are bought at larger scales. The insights gleaned from the device could help waste management officials identify contaminated trash piles as well as inform education efforts by revealing common mistakes people make.

    Overall, Tarkanian believes the competition was a success not only because of the final results, but because of the experience the students got throughout the MADMEC program, which included several smaller, hands-on competitions involving laser cutters, 3-D printers, soldering irons, and other equipment many students said they had never used before.

    “They end up getting into the lab through these design challenges, which have them compete in various engineering tasks,” Tarkanian says. “It helps them get comfortable designing and prototyping, and they often end up using those tools in their research later.” More

  • in

    Simulating neutron behavior in nuclear reactors

    Amelia Trainer applied to MIT because she lost a bet.

    As part of what the fourth-year nuclear science and engineering (NSE) doctoral student labels her “teenage rebellious phase,” Trainer was quite convinced she would just be wasting the application fee were she to submit an application. She wasn’t even “super sure” she wanted to go to college. But a high-school friend was convinced Trainer would get into a “top school” if she only applied. A bet followed: If Trainer lost, she would have to apply to MIT. Trainer lost — and is glad she did.

    Growing up in Daytona Beach, Florida, good grades were Trainer’s thing. Seeing friends participate in interschool math competitions, Trainer decided she would tag along and soon found she loved them. She remembers being adept at reading the room: If teams were especially struggling over a problem, Trainer figured the answer had to be something easy, like zero or one. “The hardest problems would usually have the most goofball answers,” she laughs.

    Simulating neutron behavior

    As a doctoral student, hard problems in math, specifically computational reactor physics, continue to be Trainer’s forte.

    Her research, under the guidance of Professor Benoit Forget in MIT NSE’s Computational Reactor Physics Group (CRPG), focuses on modeling complicated neutron behavior in reactors. Simulation helps forecast the behavior of reactors before millions of dollars sink into development of a potentially uneconomical unit. Using simulations, Trainer can see “where the neutrons are going, how much heat is being produced, and how much power the reactor can generate.” Her research helps form the foundation for the next generation of nuclear power plants.

    To simulate neutron behavior inside of a nuclear reactor, you first need to know how neutrons will interact with the various materials inside the system. These neutrons can have wildly different energies, thereby making them susceptible to different physical phenomena. For the entirety of her graduate studies, Trainer has been primarily interested in the physics regarding slow-moving neutrons and their scattering behavior.

    When a slow neutron scatters off of a material, it can induce or cancel out molecular vibrations between the material’s atoms. The effect that material vibrations can have on neutron energies, and thereby on reactor behavior, has been heavily approximated over the years. Trainer is primarily interested in chipping away at these approximations by creating scattering data for materials that have historically been misrepresented and by exploring new techniques for preparing slow-neutron scattering data.

    Trainer remembers waiting for a simulation to complete in the early days of the Covid-19 pandemic, when she discovered a way to predict neutron behavior with limited input data. Traditionally, “people have to store large tables of what neutrons will do under specific circumstances,” she says. “I’m really happy about it because it’s this really cool method of sampling what your neutron does from very little information,” Trainer says.

    Amelia Trainer — Modeling complicated neutron behavior in nuclear reactors

    As part of her research, Trainer often works closely with two software packages: OpenMC and NJOY. OpenMC is a Monte Carlo neutron transport simulation code that was developed in the CRPG and is used to simulate neutron behavior in reactor systems. NJOY is a nuclear data processing tool, and is used to create, augment, and prepare material data that is fed into tools like OpenMC. By editing both these codes to her specifications, Trainer is able to observe the effect that “upstream” material data has on the “downstream” reactor calculations. Through this, she hopes to identify additional problems: approximations that could lead to a noticeable misrepresentation of the physics.

    A love of geometry and poetry

    Trainer discovered the coolness of science as a child. Her mother, who cares for indoor plants and runs multiple greenhouses, and her father, a blacksmith and farrier, who explored materials science through his craft, were self-taught inspirations.

    Trainer’s father urged his daughter to learn and pursue any topics that she found exciting and encouraged her to read poems from “Calvin and Hobbes” out loud when she struggled with a speech impediment in early childhood. Reading the same passages every day helped her memorize them. “The natural manifestation of that extended into [a love of] poetry,” Trainer says.

    A love of poetry, combined with Trainer’s propensity for fun, led her to compose an ode to pi as part of an MIT-sponsored event for alumni. “I was really only in it for the cupcake,” she laughs. (Participants received an indulgent treat).

    Play video

    MIT Matters: A Love Poem to Pi

    Computations and nuclear science

    After being accepted at MIT, Trainer knew she wanted to study in a field that would take her skills at the levels they were at — “my math skills were pretty underdeveloped in the grand scheme of things,” she says. An open-house weekend at MIT, where she met with faculty from the NSE department, and the opportunity to contribute to a discipline working toward clean energy, cemented Trainer’s decision to join NSE.

    As a high schooler, Trainer won a scholarship to Embry-Riddle Aeronautical University to learn computer coding and knew computational physics might be more aligned with her interests. After she joined MIT as an undergraduate student in 2014, she realized that the CRPG, with its focus on coding and modeling, might be a good fit. Fortunately, a graduate student from Forget’s team welcomed Trainer’s enthusiasm for research even as an undergraduate first-year. She has stayed with the lab ever since. 

    Research internships at Los Alamos National Laboratory, the creators of NJOY, have furthered Trainer’s enthusiasm for modeling and computational physics. She met a Los Alamos scientist after he presented a talk at MIT and it snowballed into a collaboration where she could work on parts of the NJOY code. “It became a really cool collaboration which led me into a deep dive into physics and data preparation techniques, which was just so fulfilling,” Trainer says. As for what’s next, Trainer was awarded the Rickover fellowship in nuclear engineering by the the Department of Energy’s Naval Reactors Division and will join the program in Pittsburgh after she graduates.

    For many years, Trainer’s cats, Jacques and Monster, have been a constant companion. “Neutrons, computers, and cats, that’s my personality,” she laughs. Work continues to fuel her passion. To borrow a favorite phrase from Spaceman Spiff, Trainer’s favorite “Calvin” avatar, Trainer’s approach to research has invariably been: “Another day, another mind-boggling adventure.” More

  • in

    MIT students contribute to success of historic fusion experiment

    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition in a laboratory, a grand challenge of the 21st century. The High-Energy-Density Physics (HEDP) group at MIT’s Plasma Science and Fusion Center has focused on an approach called inertial confinement fusion (ICF), which uses lasers to implode a pellet of fuel in a quest for ignition. This group, including nine former and current MIT students, was crucial to an historic ICF ignition experiment performed in 2021; the results were published on the anniversary of that success.

    On Aug. 8, 2021, researchers at the National Ignition Facility (NIF), Lawrence Livermore National Laboratory (LLNL), used 192 laser beams to illuminate the inside of a tiny gold cylinder encapsulating a spherical capsule filled with deuterium-tritium fuel in their quest to produce significant fusion energy. Although researchers had followed this process many times before, using different parameters, this time the ensuing implosion produced an historic fusion yield of 1.37 megaJoules, as measured by a suite of neutron diagnostics. These included the MIT-developed and analyzed Magnetic Recoil Spectrometer (MRS). This result was published in Physical Review Letters on Aug. 8, the one-year anniversary of the ground-breaking development, unequivocally indicating that the first controlled fusion experiment reached ignition.

    Governed by the Lawson criterion, a plasma ignites when the internal fusion heating power is high enough to overcome the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop that very rapidly increases the plasma temperature. In the case of ICF, ignition is a state where the fusion plasma can initiate a “fuel burn propagation” into the surrounding dense and cold fuel, enabling the possibility of high fusion-energy gain.

    “This historic result certainly demonstrates that the ignition threshold is a real concept, with well-predicted theoretical calculations, and that a fusion plasma can be ignited in a laboratory” says HEDP Division Head Johan Frenje.

    The HEDP division has contributed to the success of the ignition program at the NIF for more than a decade by providing and using a dozen diagnostics, implemented by MIT PhD students and staff, which have been critical for assessing the performance of an implosion. The hundreds of co-authors on the paper attest to the collaborative effort that went into this milestone. MIT’s contributors included the only student co-authors.

    “The students are responsible for implementing and using a diagnostic to obtain data important to the ICF program at the NIF, says Frenje. “Being responsible for running a diagnostic at the NIF has allowed them to actively participate in the scientific dialog and thus get directly exposed to cutting-edge science.”

    Students involved from the MIT Department of Physics were Neel Kabadi, Graeme Sutcliffe, Tim Johnson, Jacob Pearcy, and Ben Reichelt; students from the Department of Nuclear Science and Engineering included Brandon Lahmann, Patrick Adrian, and Justin Kunimune.

    In addition, former student Alex Zylstra PhD ’15, now a physicist at LLNL, was the experimental lead of this record implosion experiment. More

  • in

    Promoting systemic change in the Middle East, the “MIT way”

    The Middle East is a region that is facing complicated challenges. MIT programs have been committed to building scalable methodologies through which students and the broader MIT community can learn and make an impact. These processes ensure programs work alongside others across cultures to support change aligned with their needs. Through MIT International Science and Technology Initiatives (MISTI), faculty and staff at the Institute continue to build opportunities to connect with and support the region.

    In this spirit, MISTI launched the Leaders Journey Workshop in 2021. This program partnered MIT students with Palestinian and Israeli alumni from three associate organizations: Middle East Entrepreneurs for Tomorrow (MEET), Our Generation Speaks (OGS), and Tech2Peace. Teams met monthly to engage with speakers and work with one another to explore the best ways to leverage science, technology, and entrepreneurship across borders.

    Building on the success of this workshop, the program piloted a for-credit course: SP.258 (MISTI: Middle East Cross-Border Development and Leadership) in fall 2021. The course involved engaging with subject matter experts through five mini-consulting projects in collaboration with regional stakeholders. Topics included climate, health care, and economic development. The course was co-instructed by associate director of the MIT Regional Entrepreneurship Acceleration Program (REAP) Sinan AbuShanab, managing director of MISTI programs in the Middle East David Dolev, and Kathleen Schwind ’19, with MIT CIS/ MISTI Research Affiliate Steven Koltai as lead mentor. The course also drew support from alumni mentors and regional industry partners.

    The course was developed during the height of the pandemic and thus successfully leveraged the intense culture of online engagement prevalent at the time by layering in-person coursework with strategic digital group engagement. Pedagogically, the structure was inspired by multiple MIT methodologies: MISTI preparation and training courses, Sloan Action Learning, REAP/REAL multi-party stakeholder model, the Media Lab Learning Initiative, and the multicultural framework of associate organizations.

    “We worked to develop a series of aims and a methodology that would enrich MIT students and their peers in the region and support the important efforts of Israelis and Palestinians to make systemic change,” said Dolev.

    During the on-campus sessions, MIT students explored the region’s political and historical complexities and the meaning of being a global leader and entrepreneur. Guest presenters included: Boston College Associate Professor Peter Krause (MIT Security Studies Program alumnus), Gilad Rosenzweig (MITdesignX), Ari Jacobovits (MIT-Africa), and Mollie Laffin-Rose Agbiboa (MIT-REAP). Group projects focused on topics that fell under three key regional verticals: water, health care, and economic development. The teams were given a technical or business challenge they were tasked with solving. These challenges were sourced directly from for-profit and nonprofit organizations in the region.

    “This was a unique opportunity for me to learn so much about the area I live in, work on a project together with people from the ‘other side,’ MIT students, and incredible mentors,” shared a participant from the region. “Furthermore, getting a glimpse of the world of MIT was a great experience for me.”

    For their final presentations, teams pitched their solutions, including their methodology for researching/addressing the problem, a description of solutions to be applied, what is needed to execute the idea itself, and potential challenges encountered. Teams received feedback and continued to deepen their experience in cross-cultural teamwork.

    “As an education manager, I needed guidance with these digital tools and how to approach them,” says an EcoPeace representative. “The MIT program provided me with clear deliverables I can now implement in my team’s work.”

    “This course has broadened my knowledge of conflicts, relationships, and how geography plays an important role in the region,” says an MIT student participant. “Moving forward, I feel more confident working with business and organizations to develop solutions for problems in real time, using the skills I have to supplement the project work.”

    Layers of engagement with mentors, facilitators, and whole-team leadership ensured that participants gained project management experience, learning objectives were met, and professional development opportunities were available. Each team was assigned an MIT-MEET alumni mentor with whom they met throughout the course. Mentors coached the teams on methods for managing a client project and how to collaborate for successful completion. Joint sessions with MIT guest speakers deepened participants’ regional understanding of water, health care, economic development, and their importance in the region. Speakers included: Mohamed Aburawi, Phil Budden (MIT-REAP) Steven Koltai, Shari Loessberg, Dina Sherif (MIT Legatum Center, Greg Sixt (J-WAFS), and Shriya Srinivasan.

    “The program is unlike any other I’ve come across,” says one of the alumni mentors. “The chance for MIT students to work directly with peers from the region, to propose and create technical solutions to real problems on the ground, and partner with local organizations is an incredibly meaningful opportunity. I wish I had been able to participate in something like this when I was at MIT.”

    Each team also assigned a fellow group member as a facilitator, who served as the main point of contact for the team and oversaw project management: organizing workstreams, ensuring deadlines were met, and mediating any group disagreements. This model led to successful project outcomes and innovative suggestions.

    “The superb work of the MISTI group gave us a critical eye and made significant headway on a product that can hopefully be a game changer to over 150 Israeli and Palestinian organizations,” says a representative from Alliance for Middle East Peace (ALLMEP).

    Leadership team meetings included MIT staff and Israeli and Palestinian leadership of the partner organizations for discussing process, content, recent geopolitical developments, and how to adapt the class to the ongoing changing situation.

    “The topic of Palestine/Israel is contentious: globally, in the region, and also, at times, on the MIT campus,” says Dolev. “I myself have questioned how we can make a systemic impact with our partners from the region. How can we be side-by-side on that journey for the betterment of all? I have now seen first-hand how this multilayered model can work.”

    MIT International Science and Technology Initiatives (MISTI) is MIT’s hub for global experiences. MISTI’s unparalleled internship, research, teaching, and study abroad programs offer students unique experiences that bring MIT’s one-of-a-kind education model to life in countries around the world. MISTI programs are carefully designed to complement on-campus course work and research, and rigorous, country-specific preparation enables students to forge cultural connections and play a role in addressing important global challenges while abroad. Students come away from their experiences with invaluable perspectives that inform their education, career, and worldview. MISTI embodies MIT’s commitment to global engagement and prepares students to thrive in an increasingly interconnected world. More

  • in

    Building better batteries, faster

    To help combat climate change, many car manufacturers are racing to add more electric vehicles in their lineups. But to convince prospective buyers, manufacturers need to improve how far these cars can go on a single charge. One of their main challenges? Figuring out how to make extremely powerful but lightweight batteries.

    Typically, however, it takes decades for scientists to thoroughly test new battery materials, says Pablo Leon, an MIT graduate student in materials science. To accelerate this process, Leon is developing a machine-learning tool for scientists to automate one of the most time-consuming, yet key, steps in evaluating battery materials.

    With his tool in hand, Leon plans to help search for new materials to enable the development of powerful and lightweight batteries. Such batteries would not only improve the range of EVs, but they could also unlock potential in other high-power systems, such as solar energy systems that continuously deliver power, even at night.

    From a young age, Leon knew he wanted to pursue a PhD, hoping to one day become a professor of engineering, like his father. Growing up in College Station, Texas, home to Texas A&M University, where his father worked, many of Leon’s friends also had parents who were professors or affiliated with the university. Meanwhile, his mom worked outside the university, as a family counselor in a neighboring city.

    In college, Leon followed in his father’s and older brother’s footsteps to become a mechanical engineer, earning his bachelor’s degree at Texas A&M. There, he learned how to model the behaviors of mechanical systems, such as a metal spring’s stiffness. But he wanted to delve deeper, down to the level of atoms, to understand exactly where these behaviors come from.

    So, when Leon applied to graduate school at MIT, he switched fields to materials science, hoping to satisfy his curiosity. But the transition to a different field was “a really hard process,” Leon says, as he rushed to catch up to his peers.

    To help with the transition, Leon sought out a congenial research advisor and found one in Rafael Gómez-Bombarelli, an assistant professor in the Department of Materials Science and Engineering (DMSE). “Because he’s from Spain and my parents are Peruvian, there’s a cultural ease with the way we talk,” Leon says. According to Gómez-Bombarelli, sometimes the two of them even discuss research in Spanish — a “rare treat.” That connection has empowered Leon to freely brainstorm ideas or talk through concerns with his advisor, enabling him to make significant progress in his research.

    Leveraging machine learning to research battery materials

    Scientists investigating new battery materials generally use computer simulations to understand how different combinations of materials perform. These simulations act as virtual microscopes for batteries, zooming in to see how materials interact at an atomic level. With these details, scientists can understand why certain combinations do better, guiding their search for high-performing materials.

    But building accurate computer simulations is extremely time-intensive, taking years and sometimes even decades. “You need to know how every atom interacts with every other atom in your system,” Leon says. To create a computer model of these interactions, scientists first make a rough guess at a model using complex quantum mechanics calculations. They then compare the model with results from real-life experiments, manually tweaking different parts of the model, including the distances between atoms and the strength of chemical bonds, until the simulation matches real life.

    With well-studied battery materials, the simulation process is somewhat easier. Scientists can buy simulation software that includes pre-made models, Leon says, but these models often have errors and still require additional tweaking.

    To build accurate computer models more quickly, Leon is developing a machine-learning-based tool that can efficiently guide the trial-and-error process. “The hope with our machine learning framework is to not have to rely on proprietary models or do any hand-tuning,” he says. Leon has verified that for well-studied materials, his tool is as accurate as the manual method for building models.

    With this system, scientists will have a single, standardized approach for building accurate models in lieu of the patchwork of approaches currently in place, Leon says.

    Leon’s tool comes at an opportune time, when many scientists are investigating a new paradigm of batteries: solid-state batteries. Compared to traditional batteries, which contain liquid electrolytes, solid-state batteries are safer, lighter, and easier to manufacture. But creating versions of these batteries that are powerful enough for EVs or renewable energy storage is challenging.

    This is largely because in battery chemistry, ions dislike flowing through solids and instead prefer liquids, in which atoms are spaced further apart. Still, scientists believe that with the right combination of materials, solid-state batteries can provide enough electricity for high-power systems, such as EVs. 

    Leon plans to use his machine-learning tool to help look for good solid-state battery materials more quickly. After he finds some powerful candidates in simulations, he’ll work with other scientists to test out the new materials in real-world experiments.

    Helping students navigate graduate school

    To get to where he is today, doing exciting and impactful research, Leon credits his community of family and mentors. Because of his upbringing, Leon knew early on which steps he would need to take to get into graduate school and work toward becoming a professor. And he appreciates the privilege of his position, even more so as a Peruvian American, given that many Latino students are less likely to have access to the same resources. “I understand the academic pipeline in a way that I think a lot of minority groups in academia don’t,” he says.

    Now, Leon is helping prospective graduate students from underrepresented backgrounds navigate the pipeline through the DMSE Application Assistance Program. Each fall, he mentors applicants for the DMSE PhD program at MIT, providing feedback on their applications and resumes. The assistance program is student-run and separate from the admissions process.

    Knowing firsthand how invaluable mentorship is from his relationship with his advisor, Leon is also heavily involved in mentoring junior PhD students in his department. This past year, he served as the academic chair on his department’s graduate student organization, the Graduate Materials Council. With MIT still experiencing disruptions from Covid-19, Leon noticed a problem with student cohesiveness. “I realized that traditional [informal] modes of communication across [incoming class] years had been cut off,” he says, making it harder for junior students to get advice from their senior peers. “They didn’t have any community to fall back on.”

    To help fix this problem, Leon served as a go-to mentor for many junior students. He helped second-year PhD students prepare for their doctoral qualification exam, an often-stressful rite of passage. He also hosted seminars for first-year students to teach them how to make the most of their classes and help them acclimate to the department’s fast-paced classes. For fun, Leon organized an axe-throwing event to further facilitate student cameraderie.

    Leon’s efforts were met with success. Now, “newer students are building back the community,” he says, “so I feel like I can take a step back” from being academic chair. He will instead continue mentoring junior students through other programs within the department. He also plans to extend his community-building efforts among faculty and students, facilitating opportunities for students to find good mentors and work on impactful research. With these efforts, Leon hopes to help others along the academic pipeline that he’s become familiar with, journeying together over their PhDs. More