in

Carbon-based polymer nanocomposite membranes for oily wastewater treatment

  • 1.

    Shannon, M. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

  • 2.

    Shi, Z. et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater. 25, 2422–2427 (2013).

  • 3.

    Zhang, R.-X., Braeken, L., Luis, P., Wang, X.-L. & Van der, B. Bruggen. Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine. J. Memb. Sci. 437, 179–188 (2013).

  • 4.

    Darmanin, T., De Givenchy, E. T., Amigoni, S. & Guittard, F. Superhydrophobic surfaces by electrochemical processes. Adv. Mater. 25, 1378–1394 (2013).

  • 5.

    Al-anzi, B. S. & Siang, O. C. Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment. RSC Adv. 7, 20981–20994 (2017).

  • 6.

    Han, G. et al. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Res. 91, 361–370 (2016).

  • 7.

    Ao, C. et al. Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohydr. Polym. 175, 216–222 (2017).

  • 8.

    Yue, X. et al. In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation. Chem. Eng. J. 117–123 (2017). https://doi.org/10.1016/j.cej.2017.07.026.

  • 9.

    Li, X. et al. Cyclonic state micro-bubble flotation column in oil-in-water emulsion separation. Sep. Purif. Technol. 165, 101–106 (2016).

  • 10.

    Shi, Q. et al. Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. J. Memb. Sci. 319, 271–278 (2008).

  • 11.

    Prince, J. A. et al. Ultra-wetting graphene-based PES ultrafiltration membrane—a novel approach for successful oil-water separation. Water Res. 103, 311–318 (2016).

  • 12.

    Zhang, R. et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 5888–5924 (2016).

  • 13.

    Aung, A. et al. 3D cardiac µ tissues within a microfluidic device with real-time contractile stress readout. Lab Chip. 16, 153–162 (2016).

  • 14.

    Thines, R. K. et al. Application potential of carbon nanomaterials in water and wastewater treatment: a review. J. Taiwan Inst. Chem. Eng. 72, 116–133 (2017).

  • 15.

    Ng, L. Y., Mohammad, A. W., Leo, C. P. & Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308, 15–33 (2013).

  • 16.

    Deng, D. et al. Hydrophobic meshes for oil spill recovery devices. ACS Appl. Mater. Interfaces 5, 774–781 (2013).

  • 17.

    Zhang, W. et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 25, 2071–2076 (2013).

  • 18.

    Gupta, S. & Tai, N.-H. Carbon materials as oil sorbents: a review on the synthesis and performance. J. Mater. Chem. A. 4, 1550–1565 (2016).

  • 19.

    Chen, P. & Xu, Z. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Sci. Rep. 1–6 (2013). https://doi.org/10.1038/srep02776.

  • 20.

    Liu, Y. et al. Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation. Nanoscale 9, 7508–7518 (2017).

  • 21.

    Bai, L. et al. Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes. Environ. Sci. Technol. 51, 253–262 (2017).

  • 22.

    Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S. & Chowdhury, Z. Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336, 97–109 (2014).

  • 23.

    Liu, J. et al. Separation of emulsified oil from oily wastewater by functionalized multiwalled carbon nanotubes. J. Dispers Sci. Technol. 37, 1294–1302 (2016).

  • 24.

    Gai, J.-G., Gong, X.-L., Wang, W.-W., Zhang, X. & Kang, W.-L. An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. A. 2, 4023 (2014).

  • 25.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. Naturematerial. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849.

  • 26.

    Duan, W. et al. Electrochemical mineral scale prevention and removal on electrically conducting carbon nanotube-polyamide reverse osmosis membranes. Environ. Sci. Proc. Imp. 16, 1300–1308 (2014).

    • CAS
    • Google Scholar
  • 27.

    Aghigh, A. et al. Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365, 389–397 (2015).

  • 28.

    Cheng, Q., Ye, D., Chang, C. & Zhang, L. Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J. Memb. Sci. 525, 1–8 (2017).

  • 29.

    Ajayan, B. P. M., Schadler, L. S., Giannaris, C. & Rubio, A. Single-walled carbon nanotube ± polymer composites: strength and weakness. Adv. Mater. 10, 750–753 (2000).

  • 30.

    Ngo, Q. et al. Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Trans. Nanotechnol. 6, 688–695 (2007).

    • Article
    • Google Scholar
  • 31.

    Klein, K. L. et al. Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103, (2008). https://doi.org/10.1063/1.2840049.

  • 32.

    Peng, X., Jin, J., Nakamura, Y., Ohno, T. & Ichinose, I. Ultrafast permeation of water through protein-based membranes. Nat. Nanotechnol. 4, 353–357 (2009).

  • 33.

    Baker, R. W. Overview of membrane science and technology. Membr. Technol. Appl. 1–14 (2004). https://doi.org/10.1002/0470020393.ch1.

  • 34.

    Padaki, M. et al. Membrane technology enhancement in oil-water separation: a review. Desalination 357, 197–207 (2015).

  • 35.

    Obaid, M. et al. Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats. Chem. Eng. J. 259, 449–456 (2015).

  • 36.

    Zhu, Y., Wang, D., Jiang, L. & Jin, J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 6, e101 (2014).

  • 37.

    Zhang, L., Zhang, Z. & Wang, P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Mater. 4, 1–8 (2012).

  • 38.

    Kota, A. K., Kwon, G., Choi, W., Mabry, J. M. & Tuteja, A. oil–water separation. Nat. Commun. 3, 1025–1028 (2012).

  • 39.

    Zhang, Y., Liu, L. & Yang, F. A novel conductive membrane with RGO/PVDF coated on carbon fiber cloth for fouling reduction with electric field in separating polyacrylamide. J. Appl. Polym. Sci. 133, 1–9 (2016).

    • Google Scholar
  • 40.

    Kochkodan, V., Johnson, D. J. & Hilal, N. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci. 206, 116–140 (2014).

  • 41.

    Freger, V., Gilron, J. & Belfer, S. TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. J. Memb. Sci. 209, 283–292 (2002).

  • 42.

    Tarabara, V. V. Multifunctional nanomaterial-enabled membranes for water treatment. (eds Street, A., Sustich, R., Duncan, J. & Savage, N.). In Nanotechnology Applications for Clean Water, 2nd edn. 155–171 (Elsevier, Oxford, 2014).

  • 43.

    Pendergast, M. M. & Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946 (2011).

  • 44.

    Nation, U. Separation and purification technology carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Sep. Purif. Technol. 209, 307–337 (2019).

  • 45.

    Sianipar, M., Kim, S. H., Iskandar, F. & Wenten, I. G. Functionalized carbon nanotube (CNT) membrane: progress and challenges. R. Soc. Chemstryyal Soc. Chem. 7, 51175–51198 (2017).

  • 46.

    Jayaramulu, K. et al. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation. Angew. Chem. – Int. Ed. 55, 1178–1182 (2016).

  • 47.

    Li, J. et al. Development of a measurement and control system for a 40l/h helium liquefier based on Siemens PLC S7-300. Phys. Procedia 67, 1181–1186 (2015).

  • 48.

    Gilje, S. et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

  • 49.

    Huang, Y. et al. Ultrafiltration membranes with structure-optimized graphene-oxide coatings for antifouling oil/water separation. Adv. Mater. Interfaces. 2, (2015). https://doi.org/10.1002/admi.201400433.

  • 50.

    Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

  • 51.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Sci. Mag. 321, 385–388 (2008).

    • CAS
    • Google Scholar
  • 52.

    Chen, H., Müller, M. B., Gilmore, K. J., Wallace, G. G. & Li, D. H. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008).

  • 53.

    Liu, N. et al. Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. J. Mater. Chem. A. 3, 20113–20117 (2015).

  • 54.

    Hu, X. et al. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. J. Memb. Sci. 476, 200–204 (2015).

  • 55.

    Liu, G., Jin, W. & Xu, N. Graphene-based membranes. R. Soc. Chemstryyal Soc. Chem. 5016–5030 (2015). https://doi.org/10.1039/c4cs00423j.

  • 56.

    Chen, D. Feng, H. & Li, J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. (2012). https://doi.org/10.1021/cr300115g.

  • 57.

    Hirsch, P. A. et al. Chemical functionalization and characterization of graphene-based materials. R. Soc. Chemstryyal Soc. Chem. (2017). https://doi.org/10.1039/c7cs00229g.

  • 58.

    Kuila, T., Bose, S., Kumar, A. & Khanra, P. Progress in materials science chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012).

  • 59.

    Luhyna, N. & Inam, F. Carbon nanotubes for epoxy nanocomposites: a review on recent developments. (eds Day, R. & Reznik, S.) In: Second International Conference on Advanced Composite Materials Technology and Aerospace Applications. 11–13 (Wrexham: 2012).

  • 60.

    Gao, S. J., Shi, Z., Bin W. Z., Zhang, F. & Jin, J. Single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. (2014). https://doi.org/10.1021/nn501851a.

  • 61.

    Gao, C. et al. Integrated oil separation and water purification by a double-layer TiO2-based mesh. Energy Environ. Sci. 6, 1147–1151 (2013).

  • 62.

    Chakrabarty, B., Ghoshal, A. K. & Purkait, M. K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Memb. Sci. 325, 427–437 (2008).

  • 63.

    Lobo, A., Cambiella, Á., Benito, J. M., Pazos, C. & Coca, J. Ultrafiltration of oil-in-water emulsions with ceramic membranes: influence of pH and crossflow velocity. J. Memb. Sci. 278, 328–334 (2006).

  • 64.

    Te Hsieh, C., Hsu, J. P., Hsu, H. H., Lin, W. H. & Juang, R. S. Hierarchical oil-water separation membrane using carbon fabrics decorated with carbon nanotubes. Surf Coat. Technol. 286, 148–154 (2016).

  • 65.

    Hu, L. et al. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water. ACS Nano. 9, 4835–4842 (2015).

  • 66.

    Saadati, J. & Pakizeh, M. Separation of oil/water emulsion using a new PSf/pebax/F-MWCNT nanocomposite membrane. J. Taiwan Inst. Chem. Eng. 71, 265–276 (2017).

  • 67.

    Gu, J. et al. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. J. Mater. Chem. A. 2, 15268 (2014).

  • 68.

    Mandal, S. et al. Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Sci. Total Environ. 612, 561–581 (2017).

    • Google Scholar
  • 69.

    Ma, L. et al. Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes (Basel) 7, (2017). https://doi.org/10.3390/membranes7010016.

  • 70.

    Zhu, X. et al. Field-induced redistribution of surfactants at the oil/water interface reduces membrane fouling on electrically conducting carbon nanotube UF membranes field-induced redistribution of surfactants at the oil/water interface reduces membrane fouling on. Environ. Sci. Technol. (2018). https://doi.org/10.1021/acs.est.8b02578.

  • 71.

    Sholl, D. S. & Johnson, J. K. Making high-flux membranes with carbon nanotubes. Science 312, 1003–1005 (2006).

  • 72.

    Gethard, K., Sae-khow, O. & Mitra, S. Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Appl. Mater. Interfaces. 3, 110–114 (2011).

  • 73.

    Zhang, X. & Yang, Z. Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes. R. Soc. Chemstryyal Soc. Chem. 2, (2014). https://doi.org/10.1039/c4ta02119c.

  • 74.

    Das, R. et al. Carbon nanotube membranes for water puri fi cation: a bright future in water desalination. DES 336, 97–109 (2014).

  • 75.

    C., M. et al. Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high fl ux., J. Mater. Chem. A Mater. Energy Sustain. 4, 17970–17980 (2016).

  • 76.

    In-Yup Jeon, D. W. C., Kumar, N. A. & Baek, J-B. Functionalization of Carbon Nanotubes, Carbon Nanotubes – Polymer Nanocomposites, (Yellampalli, S. ed.), InTech (2011). Available from: http://www.intechopen.com/books/carbon-nanotubes-polymer-nanocomposites/functionalization-of-carbon-nanotubes.

  • 77.

    Liu, H. et al. Flexible macroporous carbon nanofiber film with high oil adsorption capacity. J. Mater. Chem. A. 2, 3557 (2014).

  • 78.

    Tai, M. H.et al. Highly efficient and flexible electrospun carbon–silica nano fibrous membrane for ultrafast gravity-driven oil–water separation. Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am501758c.

  • 79.

    Al-Saleh, M. H. & Sundararaj, U. Review of the mechanical properties of carbon nanofiber/polymer composites. Compos. Part A Appl. Sci. Manuf. 42, 2126–2142 (2011).

  • 80.

    Hammel, E. et al. Carbon nanofibers for composite applications. Carbon N. Y. 42, 1153–1158 (2004).

  • 81.

    Zhang, J., Xue, Q., Pan, X., Jin, Y., Lu, W., Ding, D. & Guo, Q. Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chem. Eng. J. 307, 643–649 (2017). https://doi.org/10.1016/j.cej.2016.08.124.

  • 82.

    Zhu, H., Qiu, S., Jiang, W., Wu, D. & Zhang, C. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ. Sci. Technol. 45, 4527–4531 (2011).

  • 83.

    Shang, Y. et al. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale 4, 7847 (2012).

  • 84.

    Liu, Y. et al. Asymmetric aerogel membranes with ultrafast water permeation for the separation of oil-in-water emulsion. ACS Appl. Mater. Interfaces 10, 26546–26554 (2018).

  • 85.

    Abraham, S., Kumaran, S. K. & Montemagno, C. D. Gas-switchable carbon nanotube/polymer hybrid membrane for separation of oil-in-water emulsions. RSC Adv. 7, 39465–39470 (2017).

  • 86.

    Jiang, Y., Hou, J., Xu, J. & Shan, B. Switchable oil/water separation with efficient and robust Janus nanofiber membranes. Carbon N. Y. (2017). https://doi.org/10.1016/j.carbon.2017.01.053.

  • 87.

    Sun, J. et al. One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion. J. Memb. Sci. 553, 131–138 (2018).

  • 88.

    Peng, Y. & Guo, Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J. Mater. Chem. A. 4, 15749–15770 (2016).

  • 89.

    Hu, L. et al. An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. J. Mater. Chem. A. 3, 23477–23482 (2015).

  • 90.

    Chen, J. et al. Highly efficient and robust oil/water separation materials based on wire mesh coated by reduced graphene oxide. Langmuir 33, 9590–9597 (2017).

  • 91.

    Guo, G., Liu, L., Zhang, Q., Pan, C. & Zou, Q. Solution-processable, durable, scalable, fluorine-grafted graphene-based superhydrophobic coating for highly efficient oil/water separation under harsh environment. New J. Chem. 42, 3819–3827 (2018).

  • 92.

    Hang, M., Juay, J., Sun, D. D. & Leckie, J. O. Carbon – silica composite nanofiber membrane for high flux separation of water-in-oil emulsion—Performance study and fouling mechanism. Sep. Purif. Technol. 156, 952–960 (2015). https://doi.org/10.1016/j.seppur.2015.08.008.

  • 93.

    Liu, Y. et al. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation. Chem. Eng. J. 336, 263–277 (2018).

  • 94.

    Peng, Y. et al. A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications: oil/water separation and cationic dyes removal. Sep. Purif. Technol. 200, 130–140 (2018).

  • 95.

    Zhu, Y., Chen, P. & Nie, W. Greatly Improved Oil-in-Water Emulsion Separation Properties of Graphene Oxide Membrane upon Compositing with Halloysite Nanotubes. Water, Air, Soil Pollut. 229, 94 (2018). https://doi.org/10.1007/s11270-018-3757-6.

  • 96.

    Liu, Y. et al. 2D Heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil–water separation. Adv. Funct. Mater. 28, 1–10 (2018).

    • Google Scholar
  • 97.

    Wu, Z., Zhang, C., Peng, K., Wang, Q. & Wang, Z. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Front. Environ. Sci. Eng. 12, 15 (2018).

  • 98.

    Chen, Q. et al. A novel photocatalytic membrane decorated with RGO-Ag-TiO2 for dye degradation and oil–water emulsion separation. J. Chem. Technol. Biotechnol. 93, 761–775 (2018).

  • 99.

    Naseem, S., Wu, C. M., Xu, T. Z., Lai, C. C. & Rwei, S. P. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide. Polymers (Basel). 10, (2018). https://doi.org/10.3390/polym10070746.

  • 100.

    Ding, G. et al. Ultrafast, reversible transition of superwettability of graphene network and controllable underwater oil adhesion for oil microdroplet transportation. Adv. Funct. Mater. 28, 1–11 (2018).

    • Google Scholar
  • 101.

    Qian, D. et al. TiO2/sulfonated graphene oxide/Ag nanoparticle membrane: in situ separation and photodegradation of oil/water emulsions. J. Memb. Sci. 554, 16–25 (2018).

  • 102.

    Zhan, Y. Thermally and chemically stable poly (arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nano fi brous composite membranes for highly efficient oil/water emulsion separation in harsh environment. J. Memb. Sci. 567, 76–88 (2018).

  • 103.

    Santosh, V., Gopinath, J., Veera Babu, P., Sainath, A. V. S. & Reddy, A. V. R. Acetyl-D-glucopyranoside functionalized carbon nanotubes for the development of high performance ultrafiltration membranes. Sep. Purif. Technol. (2017). https://doi.org/10.1016/j.seppur.2017.09.018.

  • 104.

    Saththasivam, J. et al. Architecture for carbon nanotube membranes towards fast and efficient oil/water separation. Sci. Rep. 8, 4–9 (2018).

  • 105.

    Zhang, L. et al. Designing a reductive hybrid membrane to selectively capture noble metallic ions during oil/water emulsion separation with further function enhancement. J. Mater. Chem. A. 6, 10217–10225 (2018).

  • 106.

    Gu, J. et al. Journal of colloid and interface science sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications. J. Colloid Interface Sci. 514, 386–395 (2018).

  • 107.

    Santosh, V., Gopinath, J. & Veera, P. Separation and purification technology acetyl-D-glucopyranoside functionalized carbon nanotubes for the development of high performance ultra fi ltration membranes. Sep. Purif. Technol. 191, 134–143 (2018).

  • 108.

    Lin, X. et al. Cobweb-inspired superhydrophobic multiscaled gating membrane with embedded network structure for robust water-in-oil emulsion separation. ACS Sustain. Chem. Eng. 5, 3448–3455 (2017).


  • Source: Resources - nature.com

    Experts urge “full speed ahead” on climate action

    Deploying drones to prepare for climate change