More stories

  • in

    Mission directors announced for the Climate Project at MIT

    The Climate Project at MIT has appointed leaders for each of its six focal areas, or Climate Missions, President Sally Kornbluth announced in a letter to the MIT community today.Introduced in February, the Climate Project at MIT is a major new effort to change the trajectory of global climate outcomes for the better over the next decade. The project will focus MIT’s strengths on six broad climate-related areas where progress is urgently needed. The mission directors in these fields, representing diverse areas of expertise, will collaborate with faculty and researchers across MIT, as well as each other, to accelerate solutions that address climate change.“The mission directors will be absolutely central as the Climate Project seeks to marshal the Institute’s talent and resources to research, develop, deploy and scale up serious solutions to help change the planet’s climate trajectory,” Kornbluth wrote in her letter, adding: “To the faculty members taking on these pivotal roles: We could not be more grateful for your skill and commitment, or more enthusiastic about what you can help us all achieve, together.”The Climate Project will expand and accelerate MIT’s efforts to both reduce greenhouse gas emissions and respond to climate effects such as extreme heat, rising sea levels, and reduced crop yields. At the urgent pace needed, the project will help the Institute create new external collaborations and deepen existing ones to develop and scale climate solutions.The Institute has pledged an initial $75 million to the project, including $25 million from the MIT Sloan School of Management to launch a complementary effort, the new MIT Climate Policy Center. MIT has more than 300 faculty and senior researchers already working on climate issues, in collaboration with their students and staff. The Climate Project at MIT builds on their work and the Institute’s 2021 “Fast Forward” climate action plan.Richard Lester, MIT’s vice provost for international activities and the Japan Steel Industry Professor of Nuclear Science and Engineering, has led the Climate Project’s formation; MIT will shortly hire a vice president for climate to oversee the project. The six Climate Missions and the new mission directors are as follows:Decarbonizing energy and industryThis mission supports advances in the electric power grid as well as the transition across all industry — including transportation, computing, heavy production, and manufacturing — to low-emissions pathways.The mission director is Elsa Olivetti PhD ’07, who is MIT’s associate dean of engineering, the Jerry McAfee Professor in Engineering, and a professor of materials science and engineering since 2014.Olivetti analyzes and improves the environmental sustainability of materials throughout the life cycle and across the supply chain, by linking physical and chemical processes to systems impact. She researches materials design and synthesis using natural language processing, builds models of material supply and technology demand, and assesses the potential for recovering value from industrial waste through experimental approaches. Olivetti has experience building partnerships across the Institute and working with industry to implement large-scale climate solutions through her role as co-director of the MIT Climate and Sustainability Consortium (MCSC) and as faculty lead for PAIA, an industry consortium on the carbon footprinting of computing.Restoring the atmosphere, protecting the land and oceansThis mission is centered on removing or storing greenhouse gases that have already been emitted into the atmosphere, such as carbon dioxide and methane, and on protecting ocean and land ecosystems, including food and water systems.MIT has chosen two mission directors: Andrew Babbin and Jesse Kroll. The two bring together research expertise from two critical domains of the Earth system, oceans and the atmosphere, as well as backgrounds in both the science and engineering underlying our understanding of Earth’s climate. As co-directors, they jointly link MIT’s School of Science and School of Engineering in this domain.Babbin is the Cecil and Ida Green Career Development Professor in MIT’s Program in Atmospheres, Oceans, and Climate. He is a marine biogeochemist whose specialty is studying the carbon and nitrogen cycle of the oceans, work that is related to evaluating the ocean’s capacity for carbon storage, an essential element of this mission’s work. He has been at MIT since 2017.Kroll is a professor in MIT’s Department of of Civil and Environmental Engineering, a professor of chemical engineering, and the director of the Ralph M. Parsons Laboratory. He is a chemist who studies organic compounds and particulate matter in the atmosphere, in order to better understand how perturbations to the atmosphere, both intentional and unintentional, can affect air pollution and climate.Empowering frontline communitiesThis mission focuses on the development of new climate solutions in support of the world’s most vulnerable populations, in areas ranging from health effects to food security, emergency planning, and risk forecasting.The mission director is Miho Mazereeuw, an associate professor of architecture and urbanism in MIT’s Department of Architecture in the School of Architecture and Planning, and director of MIT’s Urban Risk Lab. Mazereeuw researches disaster resilience, climate change, and coastal strategies. Her lab has engaged in design projects ranging from physical objects to software, while exploring methods of engaging communities and governments in preparedness efforts, skills she brings to bear on building strong collaborations with a broad range of stakeholders.Mazereeuw is also co-lead of one of the five projects selected in MIT’s Climate Grand Challenges competition in 2022, an effort to help communities prepare by understanding the risk of extreme weather events for specific locations.Building and adapting healthy, resilient citiesA majority of the world’s population lives in cities, so urban design and planning is a crucial part of climate work, involving transportation, infrastructure, finance, government, and more.Christoph Reinhart, the Alan and Terri Spoon Professor of Architecture and Climate and director of MIT’s Building Technology Program in the School of Architecture and Planning, is the mission director in this area. The Sustainable Design Lab that Reinhart founded when he joined MIT in 2012 has launched several technology startups, including Mapdwell Solar System, now part of Palmetto Clean Technology, as well as Solemma, makers of an environmental building design software used in architectural practice and education worldwide. Reinhart’s online course on Sustainable Building Design has an enrollment of over 55,000 individuals and forms part of MIT’s XSeries Program in Future Energy Systems.Inventing new policy approachesClimate change is a unique crisis. With that in mind, this mission aims to develop new institutional structures and incentives — in carbon markets, finance, trade policy, and more — along with decision support tools and systems for scaling up climate efforts.Christopher Knittel brings extensive knowledge of these topics to the mission director role. The George P. Shultz Professor and Professor of Applied Economics at the MIT Sloan School of Management, Knittel has produced high-impact research in multiple areas; his studies on emissions and the automobile industry have evaluated fuel-efficiency standards, changes in vehicle fuel efficiency, market responses to fuel-price changes, and the health impact of automobiles.Beyond that, Knittel has also studied the impact of the energy transition on jobs, conducted high-level evaluations of climate policies, and examined energy market structures. He joined the MIT faculty in 2011. He also serves as the director of the MIT Climate Policy Center, which will work closely with all six missions.Wild cardsThis mission consists of what the Climate Project at MIT calls “unconventional solutions outside the scope of the other missions,” and will have a broad portfolio for innovation.While all the missions will be charged with encouraging unorthodox approaches within their domains, this mission will seek out unconventional solutions outside the scope of the others, and has a broad mandate for promoting them.The mission director in this case is Benedetto Marelli, the Paul M. Cook Career Development Associate Professor in MIT’s Department of Civil and Environmental Engineering. Marelli’s research group develops biopolymers and bioinspired materials with reduced environmental impact compared to traditional technologies. He engages with research at multiple scales, including nanofabrication, and the research group has conducted extensive work on food security and safety while exploring new techniques to reduce waste through enhanced food preservation and to precisely deliver agrochemicals in plants and in soil.As Lester and other MIT leaders have noted, the Climate Project at MIT is still being shaped, and will have the flexibility to accommodate a wide range of projects, partnerships, and approaches needed for thoughtful, fast-moving change. By filling out the leadership structure, today’s announcement is a major milestone in making the project operational.In addition to the six Climate Missions, the Climate Project at MIT includes Climate Frontier Projects, which are efforts launched by these missions, and a Climate HQ, which will support fundamental research, education, and outreach, as well as new resources to connect research to the practical work of climate response. More

  • in

    Collaborative effort supports an MIT resilient to the impacts of extreme heat

    Warmer weather can be a welcome change for many across the MIT community. But as climate impacts intensify, warm days are often becoming hot days with increased severity and frequency. Already this summer, heat waves in June and July brought daily highs of over 90 degrees Fahrenheit. According to the Resilient Cambridge report published in 2021, from the 1970s to 2000, data from the Boston Logan International Airport weather station reported an average of 10 days of 90-plus temperatures each year. Now, simulations are predicting that, in the current time frame of 2015-44, the number of days above 90 F could be triple the 1970-2000 average. While the increasing heat is all but certain, how institutions like MIT will be affected and how they respond continues to evolve. “We know what the science is showing, but how will this heat impact the ability of MIT to fulfill its mission and support its community?” asks Brian Goldberg, assistant director of the MIT Office of Sustainability. “What will be the real feel of these temperatures on campus?” These questions and more are guiding staff, researchers, faculty, and students working collaboratively to understand these impacts to MIT and inform decisions and action plans in response.This work is part of developing MIT’s forthcoming Climate Resiliency and Adaptation Roadmap, which is called for in MIT’s climate action plan, and is co-led by Goldberg; Laura Tenny, senior campus planner; and William Colehower, senior advisor to the vice president for campus services and stewardship. This effort is also supported by researchers in the departments of Urban Studies and Planning, Architecture, and Electrical Engineering and Computer Science (EECS), in the Urban Risk Lab and the Senseable City Lab, as well as by staff in MIT Emergency Management and Housing and Residential Services. The roadmap — which builds upon years of resiliency planning and research at MIT — will include an assessment of current and future conditions on campus as well as strategies and proposed interventions to support MIT’s community and campus in the face of increasing climate impacts.A key piece of the resiliency puzzleWhen the City of Cambridge released their Climate Change Vulnerability Assessment in 2015, the report identified flooding and heat as primary resiliency risks to the city. In response, Institute staff worked together with the city to create a full picture of potential flood risks to both Cambridge and the campus, with the latter becoming the MIT Climate Resiliency Dashboard. The dashboard, published in the MIT Sustainability DataPool, has played an important role in campus planning and resiliency efforts since its debut in 2021, but heat has been a missing piece of the tool. This is largely because for heat, unlike flooding, few data exist relative to building-level impacts. The original assessment from Cambridge showed a model of temperature averages that could be expected in portions of the city, but understanding the measured heat impacts down to the building level is essential because impacts of heat can vary so greatly. “Heat also doesn’t conform to topography like flooding, making it harder to map it with localized specificity,” notes Tenny. “Microclimates, humidity levels, shade or sun aspect, and other factors contribute to heat risk.”Collection efforts have been underway for the past three years to fill in this gap in baseline data. Members of the Climate and Resiliency Adaptation Roadmap team and partners have helped build and place heat sensors to record and analyze data. The current heat sensors, which are shoebox-shaped devices on tripods, can be found at multiple outdoor locations on campus during the summer, capturing and recording temperatures multiple times each hour. “Urban environmental phenomena are hyperlocal. While National Weather Service readouts at locations like Logan Airport are extremely valuable, this gives us a more high-resolution understanding of the urban microclimate on our campus,” notes Sanjana Paul, past technical associate with Senseable City and current graduate student in the Department of Urban Studies and Planning who helps oversee data collection and analysis.After collection, temperature data are analyzed and mapped. The data will soon be published in the updated Climate Resiliency Dashboard and will help inform actions through the Climate Resiliency and Adaptation Roadmap, but in the meantime, the information has already provided some important insights. “There were some parts of campus that were much hotter than I expected,” explains Paul. “Some of the temperature readings across campus were regularly going over 100 degrees during heat waves. It’s a bit surprising to see three digits on a temperature reading in Cambridge.” Some strategies are also already being put into action, including planting more trees to support the urban campus forest and launching cooling locations around campus to open during days of extreme heat.As data gathering enters its fourth summer, partners continue to expand. Senseable City first began capturing data in 2021 using sensors placed on MIT Recycling trucks, and the Urban Risk Lab has offered community-centered temperature data collection with the help of its director and associate professor of architecture, Miho Mazereeuw. More recently, students in course 6.900 (Engineering for Impact) worked to design heat sensors to aid in the data collection and grow the fleet of sensors on campus. Co-instructed by EECS senior lecturer Joe Steinmeyer and EECS professor Joel Voldman, students in the course were tasked with developing technology to solve challenges close at hand. “One of the goals of the class is to tackle real-world problems so students emerge with confidence as an engineer,” explains Voldman. “Having them work on a challenge that is outside their comfort zone and impacts them really helps to engage and inspire them.” Centering on peopleWhile the temperature data offer one piece of the resiliency planning puzzle, knowing how these temperatures will affect community members is another. “When we look at impacts to our campus from heat, people are the focus,” explains Goldberg. “While stress on campus infrastructure is one factor we are evaluating, our primary focus is the vulnerability of people to extreme heat.” Impacts to community members can range from disrupted nights of sleep to heat-related illnesses.As the team looked at the data and spoke with individuals across campus, it became clear that some community members might be more vulnerable than others to the impact of extreme heat days, including ground, janitorial, and maintenance crews who work outside; kitchen staff who work close to hot equipment; and student athletes exerting themselves on hot days. “We know that people on our campus are already experiencing these extreme heat days differently,” explains Susy Jones, senior sustainability project manager in the Office of Sustainability who focuses on environmental and climate justice. “We need to design strategies and augment existing interventions with equity in mind, ensuring everyone on campus can fulfill their role at MIT.”To support those strategy decisions, the resiliency team is seeking additional input from the MIT community. One hoped-for outcome of the roadmap and dashboard is for community members to review them and offer their own insight and experiences of heat conditions on campus. “These plans need to work at the campus level and the individual,” says Goldberg. “The data tells an important story, but individuals help us complete the picture.”A model for othersAs the dashboard update nears completion and the broader resiliency and adaptation roadmap of strategies launches, their purpose is twofold: help MIT develop and inform plans and procedures for mitigating and addressing heat on campus, and serve as a model for other universities and communities grappling with the same challenges. “This approach is the center of how we operate at MIT,” explains Director of Sustainability Julie Newman. “We seek to identify solutions for our own campus in a manner that others can learn from and potentially adapt for their own resiliency and climate planning purposes. We’re also looking to align with efforts at the city and state level.” By publishing the roadmap broadly, universities and municipalities can apply lessons and processes to their own spaces.When the updated Climate Resiliency Dashboard and Climate Resiliency and Adaptation Roadmap go live, it will mark the beginning of the next phase of work, rather than an end. “The dashboard is designed to present these impacts in a way everyone can understand so people across campus can respond and help us understand what is needed for them to continue to fulfill their role at MIT,” says Goldberg. Uncertainty plays a big role in resiliency planning, and the dashboard will reflect that. “This work is not something you ever say is done,” says Goldberg. “As information and data evolves, so does our work.”  More

  • in

    Convening for cultural change

    Whether working with fellow students in the Netherlands to design floating cities or interning for a local community-led environmental justice organization, Cindy Xie wants to help connect people grappling with the implications of linked social and environmental crises.The MIT senior’s belief that climate action is a collective endeavor grounded in systems change has led her to work at a variety of community organizations, and to travel as far as Malaysia and Cabo Verde to learn about the social and cultural aspects of global environmental change.“With climate action, there is such a need for collective change. We all need to be a part of creating the solutions,” she says.Xie recently returned from Kuala Lumpur, where she attended the Planetary Health Annual Meeting hosted by Sunway University, and met researchers, practitioners, and students from around the world who are working to address challenges facing human and planetary health.Since January 2023, Xie has been involved with the Planetary Health Alliance, a consortium of organizations working at the intersection of human health and global environmental change. As a campus ambassador, she organized events at MIT that built on students’ interests in climate change and health while exploring themes of community and well-being.“I think doing these events on campus and bringing people together has been my way of trying to understand how to put conceptual ideas into action,” she says.Grassroots community-buildingAn urban studies and planning major with minors in anthropology and biology, Xie is also earning her master’s degree in city planning in a dual degree program, which she will finish next year.Through her studies and numerous community activities, she has developed a multidimensional view of public health and the environment that includes spirituality and the arts as well as science and technology. “What I appreciate about being here at MIT is the opportunities to try to connect the sciences back to other disciplines,” she says.As a campus ambassador for the Planetary Health Alliance, Xie hosted a club mixer event during Earth Month last year, that brought together climate, health, and social justice groups from across the Institute. She also created a year-long series that concluded its final event last month, called Cultural Transformation for Planetary Health. Organized with the Radius Forum and other partners, the series explored social and cultural implications of the climate crisis, with a focus on how environmental change affects health and well-being.Xie has also worked with the Planetary Health Alliance’s Constellation Project through a Public Service Fellowship from the PKG Center, which she describes as “an effort to convene people from across different areas of the world to talk about the intersections of spirituality, the climate, and environmental change and planetary health.”She has also interned at the Comunidades Enraizadas Community Land Trust, the National Institutes of Health, and the World Wildlife Fund U.S. Markets Institute. And, she has taken her studies abroad through MIT International Science and Technology Initiatives (MISTI). In 2023 she spent her Independent Activities Period in a pilot MISTI Global Classroom program in Amsterdam, and in the summer of 2023, she spent two months in Cabo Verde helping to start a new research collaboration tracking the impacts of climate change on human health.The power of storytellingGrowing up, Xie was drawn to storytelling as a means of understanding the intersections of culture and health within diverse communities. This has largely driven her interest in medical anthropology and medical humanities, and impacts her work as a member of the Asian American Initiative.The AAI is a student-led organization that provides a space for pan-Asian advocacy and community building on campus. Xie joined the group in 2022 and currently serves as a member of the executive board as well as co-leader of the Mental Health Project Team. She credits this team with inspiring discussions on holistic framings of mental health.“Conversations on mental health stigma can sometimes frame it as a fault within certain communities,” she says. “It’s also important to highlight alternate paradigms for conceptualizing mental health beyond the highly individualized models often presented in U.S. higher education settings.”Last spring, the AAI Mental Health team led a listening tour with Asian American clinicians, academic experts, and community organizations in Greater Boston, expanding the group’s connections. That led the group to volunteer last November at the Asian Mental Health Careers Day, hosted by the Let’s Talk! Conference at the Harvard Graduate School of Education. In March, the club also traveled to Yale University to participate in the East Coast Asian American Student Union Conference alongside hundreds of attendees from different college campuses.On campus, the team hosts dialogue events where students convene in an informal setting to discuss topics such as family ties and burnout and overachievement. Recently, AAI also hosted a storytelling night in partnership with MIT Taara and the newly formed South Asian Initiative. “There’s been something really powerful about being in those kinds of settings and building collective stories among peers,” Xie says.Community connectionsWriting, both creative and non-fiction, is another of Xie’s longstanding interests. From 2022 to 2023, she wrote for The Yappie, a youth-led news publication covering Asian American and Pacific Islander policy and politics. She has also written articles for The Tech, MIT Science Policy Review, MISTI Blogs, and more. Last year, she was a spread writer for MIT’s fashion publication, Infinite Magazine, for which she interviewed the founder of a local streetwear company that aims to support victims of sexual violence in the Democratic Republic of Congo.This year, she performed a spoken word piece in the “MIT Monologues,” an annual production at MIT that features stories of gender, relationships, race, and more. Her poetry was recently published in Sine Theta and included in MassPoetry’s 2024 Intercollegiate Showcase. Xie has previously been involved in the a capella group MIT Muses and enjoys live music and concerts as well. Tapping into her 2023 MISTI experience, Xie recently went to the concert of a Cabo Verdean artist at the Strand Theatre in Dorchester. “The crowd was packed,” she says. “It was just like being back in Cabo Verde. I feel very grateful to have seen these local connections.”After graduating, Xie hopes to continue building interdisciplinary connections. “I’m interested in working in policy or academia or somewhere in between the two, sort of around this idea of partnership and alliance building. My experiences abroad during my time at MIT have also made me more interested in working in an international context in the future.” More

  • in

    Has remote work changed how people travel in the U.S?

    The prevalence of remote work since the start of the Covid-19 pandemic has significantly changed urban transportation patterns in the U.S., according to new study led by MIT researchers.

    The research finds significant variation between the effects of remote work on vehicle miles driven and on mass-transit ridership across the U.S.

    “A 1 percent decrease in onsite workers leads to a roughly 1 percent reduction in [automobile] vehicle miles driven, but a 2.3 percent reduction in mass transit ridership,” says Yunhan Zheng SM ’21, PhD ’24, an MIT postdoc who is co-author of a the study.

    “This is one of the first studies that identifies the causal effect of remote work on vehicle miles traveled and transit ridership across the U.S.,” adds Jinhua Zhao, an MIT professor and another co-author of the paper.

    By accounting for many of the nuances of the issue, across the lower 48 states and the District of Columbia as well as 217 metropolitan areas, the scholars believe they have arrived at a robust conclusion demonstrating the effects of working from home on larger mobility patterns.

    The paper, “Impacts of remote work on vehicle miles traveled and transit ridership in the USA,” appears today in the journal Nature Cities. The authors are Zheng, a doctoral graduate of MIT’s Department of Civil and Environmental Engineering and a postdoc at the Singapore–MIT Alliance for Research and Technology (SMART); Shenhao Wang PhD ’20, an assistant professor at the University of Florida; Lun Liu, an assistant professor at Peking University; Jim Aloisi, a lecturer in MIT’s Department of Urban Studies and Planning (DUSP); and Zhao, the Professor of Cities and Transportation, founder of the MIT Mobility Initiative, and director of MIT’s JTL Urban Mobility Lab and Transit Lab.

    The researchers gathered data on the prevalence of remote work from multiple sources, including Google location data, travel data from the U.S. Federal Highway Administration and the National Transit Database, and the monthly U.S. Survey of Working Arrangements and Attitudes (run jointly by Stanford University, the University of Chicago, ITAM, and MIT).

    The study reveals significant variation among U.S. states when it comes to how much the rise of remote work has affected mileage driven.

    “The impact of a 1 percent change in remote work on the reduction of vehicle miles traveled in New York state is only about one-quarter of that in Texas,” Zheng observes. “There is real variation there.”

    At the same time, remote work has had the biggest effect on mass-transit revenues in places with widely used systems, with New York City, Chicago, San Francisco, Boston, and Philadelphia making up the top five hardest-hit metro areas.

    The overall effect is surprisingly consistent over time, from early 2020 through late 2022.

    “In terms of the temporal variation, we found that the effect is quite consistent across our whole study period,” Zheng says. “It’s not just significant in the early stage of the pandemic, when remote work was a necessity for many. The magnitude remains consistent into the later period, when many people have the flexibility to choose where they want to work. We think this may have long-term implications.”

    Additionally, the study estimates the impact that still larger numbers of remote workers could have on the environment and mass transit.

    “On a national basis, we estimate that a 10 percent decrease in the number of onsite workers compared to prepandemic levels will reduce the annual total vehicle-related CO2 emissions by 191.8 million metric tons,” Wang says.

    The study also projects that across the 217 metropolitan areas in the study, a 10 percent decrease in the number of onsite workers, compared to prepandemic levels, would lead to an annual loss of 2.4 billion transit trips and $3.7 billion in fare revenue — equal to roughly 27 percent of the annual transit ridership and fare revenue in 2019.

    “The substantial influence of remote work on transit ridership highlights the need for transit agencies to adapt their services accordingly, investing in services tailored to noncommuting trips and implementing more flexible schedules to better accommodate the new demand patterns,” Zhao says.

    The research received support from the MIT Energy Initiative; the Barr Foundation; the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise program; the Research Opportunity Seed Fund 2023 from the University of Florida; and the Beijing Social Science Foundation. More

  • in

    Think globally, rebuild locally

    Building construction accounts for a huge chunk of greenhouse gas emissions: About 36 percent of carbon dioxide emissions and 40 percent of energy consumption in Europe, for instance. That’s why the European Union has developed regulations about the reuse of building materials.

    Some cities are adding more material reuse into construction already. Amsterdam, for example, is attempting to slash its raw material use by half by 2030. The Netherlands as a whole aims for a “circular economy” of completely reused materials by 2050.

    But the best way to organize the reuse of construction waste is still being determined. For one thing: Where should reusable building materials be stored before they are reused? A newly published study focusing on Amsterdam finds the optimal material reuse system for construction has many local storage “hubs” that keep materials within a few miles of where they will be needed.

    “Our findings provide a starting point for policymakers in Amsterdam to strategize land use effectively,” says Tanya Tsui, a postdoc at MIT and a co-author of the new paper. “By identifying key locations repeatedly favored across various hub scenarios, we underscore the importance of prioritizing these areas for future circular economy endeavors in Amsterdam.”

    The study adds to an emerging research area that connects climate change and urban planning.

    “The issue is where you put material in between demolition and new construction,” says Fábio Duarte, a principal researcher at MIT’s Senseable City Lab and a co-author of the new paper. “It will have huge impacts in terms of transportation. So you have to define the best sites. Should there be only one? Should we hold materials across a wide number of sites? Or is there an optimal number, even if it changes over time? This is what we examined in the paper.”

    The paper, “Spatial optimization of circular timber hubs,” is published in NPJ Nature Urban Sustainability. The authors are Tsui, who is a postdoc at the MIT Senseable Amsterdam Lab in the Amsterdam Institute for Advanced Metropolitan Solutions (AMS); Titus Venverloo, a research fellow at MIT Senseable Amsterdam Lab and AMS; Tom Benson, a researcher at the Senseable City Lab; and Duarte, who is also a lecturer in MIT’s Department of Urban Studies and Planning and the MIT Center for Real Estate.

    Numerous experts have previously studied at what scale the “circular economy” of reused materials might best operate. Some have suggested that very local circuits of materials recycling make the most sense; others have proposed that building-materials recycling will work best at a regional scale, with a radius of distribution covering 30 or more miles. Some analyses contend that global-scale reuse will be necessary to an extent.

    The current study adds to this examination of the best geographic scale for using construction materials again. Currently the storage hubs that do exist for such reused materials are chosen by individual companies, but those locations might not be optimal either economically or environmentally. 

    To conduct the study, the researchers essentially conducted a series of simulations of the Amsterdam metropolitan area, focused exclusively on timber reuse. The simulations examined how the system would work if anywhere from one to 135 timber storage hubs existed in greater Amsterdam. The modeling accounted for numerous variables, such as emissions reductions, logistical factors, and even how changing supply-and-demand scenarios would affect the viability of the reusehubs.

    Ultimately, the research found that Amsterdam’s optimal system would have 29 timber hubs, each serving a radius of about 2 miles. That setup generated 95 percent of the maximum reduction in CO2 emissions, while retaining logistical and economic benefits.

    That results also lands firmly on the side of having more localized networks for keeping construction materials in use.

    “If we have demolition happening in certain sites, then we can project where the best spots around the city are to have these circular economy hubs, as we call them,” Duarte says. “It’s not only one big hub — or one hub per construction site.”

    The study seeks to identify not only the optimal number of storage sites, but to identify where those sites might be.

    “[We hope] our research sparks discussions regarding the location and scale of circular hubs,” Tsui says. “While much attention has been given to governance aspects of the circular economy in cities, our study demonstrates the potential of utilizing location data on materials to inform decisions in urban planning.”

    The simulations also illuminated the dynamics of materials reuse. In scenarios where Amsterdam had from two to 20 timber recycling hubs, the costs involved lowered as the number of hubs increased — because having more hubs reduces transportation costs. But when the number of hubs went about 40, the system as a whole became more expensive — because each timber depot was not storing enough material to justify the land use.

    As such, the results may be of interest to climate policymakers, urban planners, and business interests getting involved in implementing the circular economy in the construction industry.

    “Ultimately,” Tsui says, “we envision our research catalyzing meaningful discussions and guiding policymakers toward more informed decisions in advancing the circular economy agenda in urban contexts.”

    The research was supported, in part, by the European Union’s Horizon 2020 research and innovation program. More

  • in

    Letting the Earth answer back: Designing better planetary conversations

    For Chen Chu MArch ’21, the invitation to join the 2023-24 cohort of Morningside Academy for Design Design Fellows has been an unparalleled opportunity to investigate the potential of design as an alternative method of problem-solving.

    After earning a master’s degree in architecture at MIT and gaining professional experience as a researcher at an environmental nongovernmental organization, Chu decided to pursue a PhD in the Department of Urban Studies and Planning. “I discovered that I needed to engage in a deeper way with the most difficult ethical challenges of our time, especially those arising from the fact of climate change,” he explains. “For me, MIT has always represented this wonderful place where people are inherently intellectually curious — it’s a very rewarding community to be part of.”

    Chu’s PhD research, guided by his doctoral advisor Delia Wendel, assistant professor of urban studies and international development, focuses on how traditional practices of floodplain agriculture can inform local and global strategies for sustainable food production and distribution in response to climate change. 

    Typically located alongside a river or stream, floodplains arise from seasonal flooding patterns that distribute nutrient-rich silt and create connectivity between species. This results in exceptionally high levels of biodiversity and microbial richness, generating the ideal conditions for agriculture. It’s no accident that the first human civilizations were founded on floodplains, including Mesopotamia (named for its location poised between two rivers, the Euphrates and Tigris), the Indus River Civilization, and the cultures of Ancient Egypt based around the Nile. Riverine transportation networks and predictable flooding rhythms provide a framework for trade and cultivation; nonetheless, floodplain communities must learn to live with risk, subject to the sudden disruptions of high waters, drought, and ecological disequilibrium. 

    For Chu, the “unstable and ungovernable” status of floodplains makes them fertile ground for thinking about. “I’m drawn to these so-called ‘wet landscapes’ — edge conditions that act as transitional spaces between land and water, between humans and nature, between city and river,” he reflects. “The development of extensively irrigated agricultural sites is typically a collective effort, which raises intriguing questions about how communities establish social organizations that simultaneously negotiate top-down state control and adapt to the uncertainty of nature.”

    Chu is in the process of honing the focus of his dissertation and refining his data collection methods, which will include archival research and fieldwork, as well as interviews with floodplain inhabitants to gain an understanding of sociopolitical nuances. Meanwhile, his role as a design fellow gives him the space to address the big questions that fire his imagination. How can we live well on shared land? How can we take responsibility for the lives of future generations? What types of political structures are required to get everyone on board? 

    These are just a few of the questions that Chu recently put to his cohort in a presentation. During the weekly seminars for the fellowship, he has the chance to converse with peers and mentors of multiple disciplines — from researchers rethinking the pedagogy of design to entrepreneurs applying design thinking to new business models to architects and engineers developing new habitats to heal our relationship with the natural world. 

    “I’ll admit — I’m wary of the human instinct to problem-solve,” says Chu. “When it comes to the material conditions and lived experience of people and planet, there’s a limit to our economic and political reasoning, and to conventional architectural practice. That said, I do believe that the mindset of a designer can open up new ways of thinking. At its core, design is an interdisciplinary practice based on the understanding that a problem can’t be solved from a narrow, singular perspective.” 

    The stimulating structure of a MAD Fellowship — free from immediate obligations to publish or produce, fellows learn from one another and engage with visiting speakers via regular seminars and events — has prompted Chu to consider what truly makes for generative conversation in the contexts of academia and the private and public sectors. In his opinion, discussions around climate change often fail to take account of one important voice; an absence he describes as “that silent being, the Earth.”

    “You can’t ask the Earth, ‘What does justice mean to you?’ Nature will not respond,” he reflects. To bridge the gap, Chu believes it’s important to combine the study of specific political and social conditions with broader existential questions raised by the environmental humanities. His own research draws upon the perspectives of thinkers including Dipesh Chakrabarty, Donna Haraway, Peter Singer,  Anna Tsing, and Michael Watts, among others. He cites James C. Scott’s lecture “In Praise of Floods” as one of his most important influences.

    In addition to his instinctive appreciation for theory, Chu’s outlook is grounded by an attention to innovation at the local level. He is currently establishing the parameters of his research, examining case studies of agricultural systems and flood mitigation strategies that have been sustained for centuries. 

    “One example is the polder system that is practiced in the Netherlands, China, Bangladesh, and many parts of the world: small, low-lying tracts of land submerged in water and surrounded by dykes and canals,” he explains. “You’ll find a different but comparable strategy in the colder regions of Japan. Crops are protected from the winter winds by constructing a spatial unit with the house at the center; trees behind the house serve as windbreakers and paddy fields for rice are located in front of the house, providing an integrated system of food and livelihood security.”

    Chu observes that there is a tendency for international policymakers to overlook local solutions in favor of grander visions and ambitious climate pledges — but he is equally keen not to romanticize vernacular practices. “Realistically, it’s always a two-way interaction. Unless you already have a workable local system in place, it’s difficult to implement a solution without top-down support. On the other hand, the large-scale technocratic dreams are empty if ignorant of local traditions and histories.” 

    By navigating between the global and the local, the theoretical and the practical, the visionary and the cautionary, Chu has hope in the possibility of gradually finding a way toward long-term solutions that adapt to specific conditions over time. It’s a model of ambition and criticality that Chu sees played out during dialogue at MAD and within his department; at root, he’s aware that the outcome of these conversations depends on the ethical context that shapes them.

    “I’ve been fortunate to have many mentors who have taught me the power of humility; a respect for the finitude, fragility,  and uncertainty of life,” he recalls. “It’s a mindset that’s barely apparent in today’s push for economic growth.” The flip-side of hubristic growth is an assumption that technological ingenuity will be enough to solve the climate crisis, but Chu’s optimism arises from a different source: “When I feel overwhelmed by the weight of the problems we’re facing, I just need to look around me,” he says. “Here on campus — at MAD, in my home department, and increasingly among the new generations of students — there’s a powerful ethos of political sensitivity, ethical compassion, and an attention to clear and critical judgment. That always gives me hope for the planet.” More

  • in

    At Sustainability Connect 2024, a look at how MIT is decarbonizing its campus

    How is MIT working to meet its goal of decarbonizing the campus by 2050? How are local journalists communicating climate impacts and solutions to diverse audiences? What can each of us do to bring our unique skills and insight to tackle the challenges of climate and sustainability?

    These are all questions asked — and answered — at Sustainability Connect, the yearly forum hosted by the MIT Office of Sustainability that offers an inside look at this transformative and comprehensive work that is the foundation for MIT’s climate and sustainability leadership on campus. The event invites individuals in every role at MIT to learn more about the sustainability and climate work happening on campus and to share their ideas, highlight important work, and find new ways to plug into ongoing efforts. “This event is a reminder of the remarkable, diverse, and committed group of colleagues we are all part of at MIT,” said Director of Sustainability Julie Newman as the event kicked off alongside Interfaith Chaplain and Spiritual Advisor to the Indigenous Community Nina Lytton, who offered a moment of connection to attendees. At the event, that diverse and committed group was made up of more than 130 community members representing more than 70 departments, labs, and centers.

    This year, Sustainability Connect was timed with announcement of the new Climate Project at MIT, with Vice Provost Richard Lester joining the event to expound on MIT’s deep commitment to tackling the climate challenge over the next 10 years through a series of climate missions — many of which build upon the ongoing research taking place across campus already. In introducing the Climate Project at MIT, Lester echoed the theme of connection and collaboration. “This plan is about helping bridge the gap between what we would accomplish as a collection of energetic, talented, ambitious individuals, and what we’re capable of if we act together,” he said.

    Play video

    Sustainability Connect 2024: Decarbonizing the Campus Video: MIT Office of Sustainability

    Highlighting one of the many collaborative efforts to address MIT’s contributions to climate change was the Decarbonizing the Campus panel, which provided a real-time look at MIT’s work to eliminate carbon emissions from campus by 2050. Newman and Vice President for Campus Services and Stewardship Joe Higgins, along with Senior Campus Planner Vasso Mathes, Senior Sustainability Project Manager Steve Lanou, and PhD student Chenhan Shao, shared the many ways MIT is working to decarbonize its campus now and respond to evolving technologies and policies in the future. “A third of MIT’s faculty and researchers … are working to identify ways in which MIT can amplify its contributions to addressing the world’s climate crisis. But part and parcel to that goal is we’re putting significant effort into decarbonizing MIT’S own carbon footprint here on our campus,” Higgins said before highlighting how MIT continues to work on projects focused on building efficiency, renewable energy on campus and off, and support of a cleaner grid, among many decarbonization strategies.

    Newman shared the way in which climate education and research play an important role through the Decarbonization Working Group research streams, and courses like class 4.s42 (Carbon Reduction Pathways for the MIT Campus) offered by Professor Christoph Reinhart. Lanou and Shao also showcased how MIT is optimizing its response to Cambridge’s Building Energy Use Disclosure Ordinance, which is aimed at tracking and reducing emissions from large commercial properties in the city with a goal of net-zero buildings by 2035. “We’ve been able [create] pathways that would be practical, innovative, have a high degree of accountability, and that could work well within the structures and the limitations that we have,” Lanou said before debuting a dashboard he and Shao developed during Independent Activities Period to track and forecast work to meet the Cambridge goal. 

    MIT’s robust commitment to decarbonize its campus goes beyond energy systems, as highlighted by the work of many staff members who led roundtables as part of Sustainability in Motion, where attendees were invited to sit down with colleagues from across campus responsible for implementing the numerous climate and sustainability commitments. Teams reported out on progress to date on a range of efforts including sustainable food systems, safe and sustainable labs, and procurement. “Tackling the unprecedented challenges of a changing planet in and around MIT takes the support of individuals and teams from all corners of the Institute,” said Assistant Director of Sustainability Brian Goldberg in leading the session. “Whether folks have sustainability or climate in their job title, or they’ve contributed countless volunteer hours to the cause, our community members are leading many meaningful efforts to transform MIT.”

    Play video

    Sustainability Connect 2024: Climate in the Media PanelVideo: Office of Sustainability

    The day culminated with a panel on climate in the media, taking the excitement from the room and putting it in context — how do you translate this work, these solutions, and these challenges for a diverse audience with an ever-changing appetite for these kinds of stories? Laur Hesse Fisher, program director for the Environmental Solutions Initiate (ESI); Barbara Moran, climate and environment reporter at WBUR radio; and independent climate journalist Annie Ropeik joined the panel moderated by Knight Science Journalism Program at MIT Director Deborah Blum. Blum spoke of the current mistrust of not only the media but of news stories of climate impacts and even solutions. “To those of us telling the story of climate change, how do we reach resistant audiences? How do we gain their trust?” she asked.

    Fisher, who hosts the TIL Climate podcast and leads the ESI Journalism Fellowship, explained how she shifts her approach depending on her audience. “[With TIL Climate], a lot of what we do is, we try to understand what kinds of questions people have,” she said. “We have people submit questions to us, and then we answer them in language that they can understand.”

    For Moran, reaching audiences relies on finding the right topic to bridge to deeper issues. On a recent story about solar arrays and their impact on forests and the landscape around them, Moran saw bees and pollinators as the way in. “I can talk about bees and flowers. And that will hook people enough to get in. And then through that, we can address this issue of forest versus commercial solar and this tension, and what can be done to address that, and what’s working and what’s not,” she said.

    The panel highlighted that even as climate solutions and challenges become clearer, communicating them can remain a challenge. “Sustainability Connect is invaluable when it comes to sharing our work and bringing more people in, but over the years, it’s become clear how many people are still outside of these conversations,” said Newman. “Capping the day off with this conversation on climate in the media served as a jumping-off point for all of us to think how we can better communicate our efforts and tackle the challenges that keep us from bringing everyone to the table to help us find and share solutions for addressing climate change. It’s just the beginning of this conversation.” More

  • in

    Anushree Chaudhuri: Involving local communities in renewable energy planning

    Anushree Chaudhuri has a history of making bold decisions. In fifth grade, she biked across her home state of California with little prior experience. In her first year at MIT, she advocated for student recommendations in the preparation of the Institute’s Climate Action Plan for the Decade. And recently, she led a field research project throughout California to document the perspectives of rural and Indigenous populations affected by climate change and clean energy projects.

    “It doesn’t matter who you are or how young you are, you can get involved with something and inspire others to do so,” the senior says.

    Initially a materials science and engineering major, Chaudhuri was quickly drawn to environmental policy issues and later decided to double-major in urban studies and planning and in economics. Chaudhuri will receive her bachelor’s degrees this month, followed by a master’s degree in city planning in the spring.

    The importance of community engagement in policymaking has become one of Chaudhuri’s core interests. A 2024 Marshall Scholar, she is headed to the U.K. next year to pursue a PhD related to environment and development. She hopes to build on her work in California and continue to bring attention to impacts that energy transitions can have on local communities, which tend to be rural and low-income. Addressing resistance to these projects can be challenging, but “ignoring it leaves these communities in the dust and widens the urban-rural divide,” she says.

    Silliness and sustainability 

    Chaudhuri classifies her many activities into two groups: those that help her unwind, like her living community, Conner Two, and those that require intensive deliberation, like her sustainability-related organizing.

    Conner Two, in the Burton-Conner residence hall, is where Chaudhuri feels most at home on campus. She describes the group’s activities as “silly” and emphasizes their love of jokes, even in the floor’s nickname, “the British Floor,” which is intentionally absurd, as the residents are rarely British.

    Chaudhuri’s first involvement with sustainability issues on campus was during the preparation of MIT’s Fast Forward Climate Action Plan in the 2020-2021 academic year. As a co-lead of one of several student working groups, she helped organize key discussions between the administration, climate experts, and student government to push for six main goals in the plan, including an ethical investing framework. Being involved with a significant student movement so early on in her undergraduate career was a learning opportunity for Chaudhuri and impressed upon her that young people can play critical roles in making far-reaching structural changes.

    The experience also made her realize how many organizations on campus shared similar goals even if their perspectives varied, and she saw the potential for more synergy among them.

    Chaudhuri went on to co-lead the Student Sustainability Coalition to help build community across the sustainability-related organizations on campus and create a centralized system that would make it easier for outsiders and group members to access information and work together. Through the coalition, students have collaborated on efforts including campus events, and off-campus matters such as the Cambridge Green New Deal hearings.

    Another benefit to such a network: It creates a support system that recognizes even small-scale victories. “Community is so important to avoid burnout when you’re working on something that can be very frustrating and an uphill battle like negotiating with leadership or seeking policy changes,” Chaudhuri says.

    Fieldwork

    For the past year, Chaudhuri has been doing independent research in California with the support of several advisory organizations to host conversations with groups affected by renewable energy projects, which, as she has documented, are often concentrated in rural, low-income, and Indigenous communities. The introduction of renewable energy facilities, such as wind and solar farms, can perpetuate existing inequities if they ignore serious community concerns, Chaudhuri says.

    As state or federal policymakers and private developers carry out the permitting process for these projects, “they can repeat histories of extraction, sometimes infringing on the rights of a local or Tribal government to decide what happens with their land,” she says.

    In her site visits, she is documenting community opposition to controversial solar and wind proposals and collecting oral histories. Doing fieldwork for the first time as an outsider was difficult for Chaudhuri, as she dealt with distrust, unpredictability, and needing to be completely flexible for her sources. “A lot of it was just being willing to drop everything and go and be a little bit adventurous and take some risks,” she says.

    Role models and reading

    Chaudhuri is quick to credit many of the role models and other formative influences in her life.

    After working on the Climate Action Plan, Chaudhuri attended a public narrative workshop at Harvard University led by Marshall Ganz, a grassroots community organizer who worked with Cesar Chavez and on the 2008 Obama presidential campaign. “That was a big inspiration and kind of shaped how I viewed leadership in, for example, campus advocacy, but also in other projects and internships.”

    Reading has also influenced Chaudhuri’s perspective on community organizing, “After the Climate Action Plan campaign, I realized that a lot of what made the campaign successful or not could track well with organizing and social change theories, and histories of social movements. So, that was a good experience for me, being able to critically reflect on it and tie it into these other things I was learning about.”

    Since beginning her studies at MIT, Chaudhuri has become especially interested in social theory and political philosophy, starting with ancient forms of Western and Eastern ethic, and up to 20th and 21st century philosophers who inspire her. Chaudhuri cites Amartya Sen and Olúfẹ́mi Táíwò as particularly influential. “I think [they’ve] provided a really compelling framework to guide a lot of my own values,” she says.

    Another role model is Brenda Mallory, the current chair of the U.S. Council on Environmental Quality, who Chaudhuri was grateful to meet at the United Nations COP27 Climate Conference. As an intern at the U.S. Department of Energy, Chaudhuri worked within a team on implementing the federal administration’s Justice40 initiative, which commits 40 percent of federal climate investments to disadvantaged communities. This initiative was largely directed by Mallory, and Chaudhuri admires how Mallory was able to make an impact at different levels of government through her leadership. Chaudhuri hopes to follow in Mallory’s footsteps someday, as a public official committed to just policies and programs.

     “Good leaders are those who empower good leadership in others,” Chaudhuri says. More