in

Mid-latitude freshwater availability reduced by projected vegetation responses to climate change

  • 1.

    Kallis, G., Kiparsky, M., Milman, A. & Ray, I. Glossing over the complexity of water. Science 314, 1387 (2006).

    • Article
    • Google Scholar
  • 2.

    Taylor, K. E. & Penner, J. E. Response of the climate system to atmospheric aerosols and greenhouse gases. Nature 369, 734–737 (1994).

    • Article
    • Google Scholar
  • 3.

    Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

    • Article
    • Google Scholar
  • 4.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

  • 5.

    Field, C. B., Jackson, R. B. & Mooney, H. A. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18, 1214–1225 (1995).

    • Article
    • Google Scholar
  • 6.

    Idso, S. B. & Brazel, A. J. Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature 312, 51–53 (1984).

    • Article
    • Google Scholar
  • 7.

    Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

    • Article
    • Google Scholar
  • 8.

    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    • Article
    • Google Scholar
  • 9.

    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    • Article
    • Google Scholar
  • 10.

    Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    • Article
    • Google Scholar
  • 11.

    Jasechko, S. Plants turn on the tap. Nat. Clim. Change 8, 562–563 (2018).

    • Article
    • Google Scholar
  • 12.

    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    • Article
    • Google Scholar
  • 13.

    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–49 (2019).

    • Article
    • Google Scholar
  • 14.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).

    • Article
    • Google Scholar
  • 15.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    • Article
    • Google Scholar
  • 16.

    Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).

    • Article
    • Google Scholar
  • 17.

    Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).

    • Article
    • Google Scholar
  • 18.

    Ault, T. R., Mankin, J. S., Cook, B. I. & Smerdon, J. E. Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv. 2, e1600873 (2016).

    • Article
    • Google Scholar
  • 19.

    Ward, E. J. et al. Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO2] enrichment under native or enhanced soil fertility. Glob. Change Biol. 24, 4841–4856 (2018).

    • Article
    • Google Scholar
  • 20.

    Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).

    • Article
    • Google Scholar
  • 21.

    Van Der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).

    • Article
    • Google Scholar
  • 22.

    Nowak, R. S. et al. Elevated atmospheric CO2 does not conserve soil water in the Mojave Desert. Ecology 85, 93–99 (2004).

    • Article
    • Google Scholar
  • 23.

    Evans, R. D. et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat. Clim. Change 4, 394–397 (2014).

    • Article
    • Google Scholar
  • 24.

    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    • Article
    • Google Scholar
  • 25.

    Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–583 (2015).

    • Article
    • Google Scholar
  • 26.

    Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–829 (2018).

    • Article
    • Google Scholar
  • 27.

    Jiang, L. et al. Scale-dependent performance of CMIP5 earth system models in simulating terrestrial vegetation carbon. J. Clim. 28, 5217–5232 (2015).

    • Article
    • Google Scholar
  • 28.

    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956 (2015).

    • Article
    • Google Scholar
  • 29.

    Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R. & McAlpine, C. A. CO2–vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys. Res. Lett. 44, 2310–2318 (2017).

    • Article
    • Google Scholar
  • 30.

    Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).

    • Article
    • Google Scholar
  • 31.

    Mankin, J. S. et al. Blue water trade-offs with ecosystems in a CO2-enriched climate. Geophys. Res. Lett. 45, 3115–3125 (2018).

    • Article
    • Google Scholar
  • 32.

    Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

    • Article
    • Google Scholar
  • 33.

    O’Gorman, P. A. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    • Article
    • Google Scholar
  • 34.

    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    • Article
    • Google Scholar
  • 35.

    Norby, R. J. et al. Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

    • Article
    • Google Scholar
  • 36.

    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).

    • Article
    • Google Scholar
  • 37.

    Walker, A. P. et al. Comprehensive ecosystem model–data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: model performance at ambient CO2 concentration. J. Geophys. Res. Biogeosci. 119, 937–964 (2014).

    • Article
    • Google Scholar
  • 38.

    De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: a model–data intercomparison at two contrasting temperate forest FACE sites. Glob. Change Biol. 19, 1759–1779 (2013).

    • Article
    • Google Scholar
  • 39.

    Calfapietra, C. et al. Challenges in elevated CO2 experiments on forests. Trends Plant Sci. 15, 5–10 (2010).

    • Article
    • Google Scholar
  • 40.

    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).

    • Article
    • Google Scholar
  • 41.

    Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).

    • Article
    • Google Scholar
  • 42.

    Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    • Article
    • Google Scholar
  • 43.

    Kovenock, M. & Swann, A. L. S. Leaf trait acclimation amplifies simulated climate warming in response to elevated carbon dioxide. Glob. Biogeochem. Cycles 32, 1437–1448 (2018).

    • Article
    • Google Scholar
  • 44.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    • Google Scholar
  • 45.

    Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33–57 (2011).

    • Article
    • Google Scholar
  • 46.

    Gu, H., Zong, Z. & Hung, K. C. A modified superconvergent patch recovery method and its application to large deformation problems. Finite Elem. Anal. Des. 40, 665–687 (2004).

    • Article
    • Google Scholar
  • 47.

    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    • Article
    • Google Scholar
  • 48.

    Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).

    • Article
    • Google Scholar
  • 49.

    Oleson, K. W. et al. Technical Description of Version 4.0 of the Community Land Model (CLM) Technical Note No. NCAR/TN-478+STR NCAR (Univ. Corporation for Atmospheric Research, 2010).

  • 50.

    The NCAR Command Language v.6.6.2 (NCAR, 2019).

  • 51.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).


  • Source: Resources - nature.com

    Symposium explores challenges of adapting to climate change

    Autonomous system improves environmental sampling at sea