in

Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites

[adace-ad id="91168"]
  • 1.

    Davis M. Invasion Biology, 1st ed. Oxford: Oxford University Press; 2009.

  • 2.

    Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, et al. Invasive plant integration into native plant–pollinator networks across Europe. Proc R Soc B Biol Sci. 2009;276:3887–93.

    Google Scholar 

  • 3.

    Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kühn I, et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 2014;12:e1001850.

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, et al. No saturation in the accumulation of alien species worldwide. Nat Commun. 2017;8:1–9.

    Google Scholar 

  • 5.

    Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ. 2010;8:135–44.

    Google Scholar 

  • 6.

    Bacher S, Blackburn TM, Essl F, Genovesi P, Heikkilä J, Jeschke JM, et al. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol Evol. 2018;9:159–68.

    Google Scholar 

  • 7.

    Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M. Plant invasions—the role of mutualism. Biol Rev. 2000;75:65–93.

    CAS  PubMed  Google Scholar 

  • 8.

    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.

    PubMed  Google Scholar 

  • 9.

    Catford JA, Smith AL, Wragg PD, Clark AT, Kosmala M, Cavender-Bares J, et al. Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecol Lett. 2019;22:593–604.

    PubMed  Google Scholar 

  • 10.

    Pyšek P, Manceur AM, Alba C, McGregor KF, Pergl J, Štajerová K, et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology. 2015;96:762–74.

    PubMed  Google Scholar 

  • 11.

    Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.

    Google Scholar 

  • 12.

    Nuñez MA, Dickie IA. Invasive belowground mutualists of woody plants. Biol Invasions. 2014;16:645–61.

    Google Scholar 

  • 13.

    Nuñez MA, Horton TR, Simberloff D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology. 2009;90:2352–5359.

    PubMed  Google Scholar 

  • 14.

    Rundel PW, Dickie IA, Richardson DM. Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invasions. 2014;16:663–75.

    Google Scholar 

  • 15.

    Delavaux CS, Weigelt P, Dawson W, Duchicela J, Essl F, van Kleunen M, et al. Mycorrhizal fungi influence global plant biogeography. Nat Ecol Evol. 2019;3:424–9.

    PubMed  Google Scholar 

  • 16.

    Policelli N, Bruns TD, Vilgalys R, Nuñez MA. Suilloid fungi as global drivers of pine invasions. N. Phytol. 2019;222:714–25.

    Google Scholar 

  • 17.

    Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. New York, USA: Academic Press; 2008.

    Google Scholar 

  • 18.

    Dickie IA, Bolstridge N, Cooper JA, Peltzer DA. Co-invasion by Pinus and its mycorrhizal fungi. N. Phytol. 2010;187:475–84.

    Google Scholar 

  • 19.

    Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau ML, Grelet G, Hulme PE, et al. The emerging science of linked plant–fungal invasions. N. Phytol. 2017;215:1314–32.

    CAS  Google Scholar 

  • 20.

    Marx DH. The practical significance of ectomycorrhizae in forest establishment. Ecophysiology of Ectomycorrhizae of Forest Trees. Stockholm, Sweden: Marcus Wallenberg Foundation; 1991. pp. 54–90.

  • 21.

    Bogar LM, Dickie IA, Kennedy PG. Testing the co-invasion hypothesis: ectomycorrhizal fungal communities on Alnus glutinosa and Salix fragilis in New Zealand. Divers Distrib. 2015;21:268–78.

    Google Scholar 

  • 22.

    Díez J. Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biol Invasions. 2005;7:3–15.

    Google Scholar 

  • 23.

    Séne S, Avril R, Chaintreuil C, Geoffroy A, Ndiaye C, Diédhiou AG, et al. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles). Mycorrhiza. 2015;25:547–59.

    PubMed  Google Scholar 

  • 24.

    Tedersoo L, Suvi T, Beaver K, Kõljalg U. Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). N. Phytol. 2007;175:321–33.

    CAS  Google Scholar 

  • 25.

    Sulzbacher MA, Grebenc T, Bevilacqua CB, Steffen RB, Coelho G, Silveira AO, et al. Co-invasion of ectomycorrhizal fungi in the Brazilian Pampa biome. Appl Soil Ecol. 2018;130:194–201.

    Google Scholar 

  • 26.

    Bahram M, Kõljalg U, Courty PE, Diédhiou AG, Kjøller R, Põlme S, et al. The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol. 2013;101:1335–44.

    Google Scholar 

  • 27.

    Thoen E, Aas AB, Vik U, Brysting AK, Skrede I, Carlsen T, et al. A single ectomycorrhizal plant root system includes a diverse and spatially structured fungal community. Mycorrhiza. 2019;29:167–80.

    CAS  PubMed  Google Scholar 

  • 28.

    Hayward J, Horton TR, Pauchard A, Nuñez MA. A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology. 2015;96:1438–44.

    PubMed  Google Scholar 

  • 29.

    Séne S, Selosse M-A, Forget M, Lambourdière J, Cissé K, Diédhiou AG, et al. A pantropically introduced tree is followed by specific ectomycorrhizal symbionts due to pseudo-vertical transmission. ISME J. 2018;12:1806–16.

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Dickie IA, Nuñez MA, Pringle A, Lebel T, Tourtellot SG, Johnston PR. Towards management of invasive ectomycorrhizal fungi. Biol Invasions. 2016;18:3383–95.

    Google Scholar 

  • 31.

    Richardson DM. Forestry trees as invasive aliens. Conserv Biol. 1998;12:18–26.

    Google Scholar 

  • 32.

    Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib. 2000;6:93–107.

    Google Scholar 

  • 33.

    Richardson DM, Rejmánek M. Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib. 2004;10:321–31.

    Google Scholar 

  • 34.

    Tedersoo L. Global biogeography and invasions of ectomycorrhizal plants: Past, present and future. Biogeography of Mycorrhizal Symbiosis. Springer International Publishing; Cham, Switzerland, 2017. pp 469–531.

  • 35.

    Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 2018;220:1108–15.

    Google Scholar 

  • 36.

    Traveset A, Richardson DM. Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst. 2014;45:89–113.

    Google Scholar 

  • 37.

    Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, et al. Spread and impact of introduced conifers in South America: Lessons from other southern hemisphere regions. Austral Ecol. 2010;35:489–504.

    Google Scholar 

  • 38.

    Rejmánek M, Richardson DM. Eucalypts. In: Simberloff D, Rejmánek M, (eds). Encyclopedia of Biological Invasions. 1st ed. Berkeley and Los Angeles: University of California Press; 2011. p. 792.

    Google Scholar 

  • 39.

    Brundrett MC, Bougher NL, Dell B, Grove T, Malajczuk N. Working with mycorrhizas in forestry and agriculture. Canberra, Australia: Australian Centre for International Agricultural Research; 1996.

  • 40.

    Rejmánek M, Richardson DM. Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib. 2013;19:1093–4.

    Google Scholar 

  • 41.

    Richardson DM, Williams PA, Hobbs RJ. Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr. 1994;21:511–27.

    Google Scholar 

  • 42.

    Richardson DM, Hui C, Nuñez MA, Pauchard A. Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions. 2014;16:473–81.

    Google Scholar 

  • 43.

    Gordon DR, Flory SL, Cooper AL, Morris SK. Assessing the invasion risk of eucalyptus in the United States using the Australian weed risk assessment. Int J Res. 2012;2012:1–7.

    Google Scholar 

  • 44.

    Calviño-Cancela M, van Etten EJB. Invasive potential of Eucalyptus globulus and Pinus radiata into native eucalypt forests in Western Australia. Ecol Manag. 2018;424:246–58.

    Google Scholar 

  • 45.

    Tererai F, Gaertner M, Jacobs SM, Richardson DM. Eucalyptus invasions in riparian forests: effects on native vegetation community diversity, stand structure and composition. Ecol Manag. 2013;297:84–93.

    Google Scholar 

  • 46.

    Richardson DM, Macdonald IAW, Forsyth GG. Reductions in plant species richness under stands of alien trees and shrubs in the fynbos biome. South Afr J. 1989;149:1–8.

    Google Scholar 

  • 47.

    Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci. 2012;109:6241–6.

    CAS  PubMed  Google Scholar 

  • 48.

    Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. N. Phytol. 2010;186:281–5.

    Google Scholar 

  • 49.

    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.

    PubMed  Google Scholar 

  • 50.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS  PubMed  Google Scholar 

  • 51.

    Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–63.

    PubMed  Google Scholar 

  • 52.

    Tedersoo L, Smith ME. Ectomycorrhizal fungal lineages: detection of four new groups and notes on consistent recognition of ectomycorrhizal taxa in high-throughput sequencing studies. In: Tedersoo L (ed.). Biogeography of Mycorrhizal Symbiosis. Springer International Publishing AG; Cham, Switzerland, 2017. pp 125–42.

  • 53.

    Větrovský T, Kohout P, Kopecký M, Machač A, Man M, Bahnmann BD, et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun. 2019;10:1–9.

    Google Scholar 

  • 54.

    Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, et al. Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytol. 2020.

  • 55.

    Morrone JJ. Biogeographical regionalisation of the world: a reappraisal. Aust Syst Bot. 2015;28:81–90.

    Google Scholar 

  • 56.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.0-10. 2012.

  • 57.

    Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:1–19.

    Google Scholar 

  • 58.

    Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett. 2011;14:19–28.

    PubMed  Google Scholar 

  • 59.

    Crawley MJ. The R Book. Chichester: Wiley Publishing; 2007.

    Google Scholar 

  • 60.

    Řehák J, Řeháková B. Analýza kategorizovaných dat v sociologii [Analysis of categorical data in sociology]. Prague: Academia; 1986.

    Google Scholar 

  • 61.

    Vinogradova Y, Pergl J, Essl F, Hejda M, van Kleunen M, Pyšek P. Invasive alien plants of Russia: insights from regional inventories. Biol Invasions. 2018;20:1931–43.

    Google Scholar 

  • 62.

    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria. Vienna, Austria: R Foundation for Statistical Computing; 2019.

    Google Scholar 

  • 63.

    Moyano J, Rodriguez‐Cabal MA, Nuñez MA. Highly invasive tree species are more dependent on mutualisms. Ecology. 2020;101:e02997.

    PubMed  Google Scholar 

  • 64.

    Richardson DM, Rejmánek M. Trees and shrubs as invasive alien species—a global review. Divers Distrib. 2011;17:788–809.

    Google Scholar 

  • 65.

    Alpert P. The advantages and disadvantages of being introduced. Biol Invasions. 2006;8:1523–34.

    Google Scholar 

  • 66.

    Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.

    Google Scholar 

  • 67.

    Molina R, Trappe JM. Biology of the ectomycorrhizal genus Rhizopogon I: host associations, host-specificity and pure culture syntheses. N. Phytol. 1994;126:653–75.

    Google Scholar 

  • 68.

    Bruns TD, Bidartondo MI, Taylor DL. Host specificity in ectomycorrhizal communities: What do the exceptions tell us? Integr Comp Biol. 2002;42:352–9.

    PubMed  Google Scholar 

  • 69.

    Nguyen NH, Vellinga EC, Bruns TD, Kennedy PG. Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa. Mycologia. 2016;108:1216–28.

    PubMed  Google Scholar 

  • 70.

    Malajczuk N, Molina R, Trappe JM. Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. N. Phytol. 1982;91:467–82.

    Google Scholar 

  • 71.

    Mortenson SG, Mack RN. The fate of alien conifers in long-term plantings in the USA. Divers Distrib. 2006;12:456–66.

    Google Scholar 

  • 72.

    Reichard SH. Assessing the potential of invasiveness in woody plants introduced in North America. Seattle: University of Washington; 1994.

    Google Scholar 

  • 73.

    Hynson NA, Merckx VSFT, Perry BA, Treseder KK. Identities and distributions of the co-invading ectomycorrhizal fungal symbionts of exotic pines in the Hawaiian Islands. Biol Invasions. 2013;15:2373–85.

    Google Scholar 

  • 74.

    Hawley GL, Taylor AFS, Dames JF. Ectomycorrhizas in association with Pinus patula in Sabie, South Africa. S Afr J Sci. 2008;104:273–83.

    Google Scholar 

  • 75.

    Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, et al. Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One. 2013;8:1–6.

    Google Scholar 

  • 76.

    Hayward J, Horton TR, Nuñez MA. Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. N. Phytol. 2015;208:497–506.

    Google Scholar 

  • 77.

    Tedersoo L, Bahram M, Jairus T, Bechem E, Chinoya S, Mpumba R, et al. Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar. Mol Ecol. 2011;20:3071–80.

    PubMed  Google Scholar 

  • 78.

    Walbert K, Ramsfield TD, Ridgway HJ, Jones EE. Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel associations determined by molecular analysis. Mycorrhiza. 2010;20:209–15.

    CAS  PubMed  Google Scholar 

  • 79.

    Murat C, Díez J, Luis P, Delaruelle C, Dupré C, Chevalier G, et al. Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization routes of the Perigord truffle Tuber melanosporum. N. Phytol. 2004;164:401–11.

    CAS  Google Scholar 

  • 80.

    Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, et al. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. N. Phytol. 2013;198:1239–49.

    Google Scholar 

  • 81.

    Setaro SD, Kron K. Neotropical and north american vaccinioideae (ericaceae) share their mycorrhizal sebacinales-an indication for concerted migration? PLoS Curr. 2011;3:RRN1227.

    PubMed  PubMed Central  Google Scholar 

  • 82.

    Kohout P, Sýkorová Z, Bahram M, Hadincová V, Albrechtová J, Tedersoo L, et al. Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza. 2011;21:403–12.

    PubMed  Google Scholar 

  • 83.

    Pietras M, Kolanowska M. Predicted potential occurrence of the North American false truffle Rhizopogon salebrosus in Europe. Fungal Ecol. 2019;39:225–30.

    Google Scholar 

  • 84.

    Koske RE, Gemma JN, Flynn T. Mycorrhizae in hawaiian angiosperms: a survey with implications for the origin of the native flora. Am J Bot. 1992;79:843–52.

    Google Scholar 

  • 85.

    Lososová Z, de Bello F, Chytrý M, Kühn I, Pyšek P, Sádlo J, et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob Ecol Biogeogr. 2015;24:786–94.

    Google Scholar 

  • 86.

    Divíšek J, Chytrý M, Beckage B, Gotelli NJ, Lososová Z, Pyšek P, et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat Commun. 2018;9:1–10.

    Google Scholar 

  • 87.

    Elton CS. The ecology of invasions by animals and plants. London: Methuen; 1958.

    Google Scholar 

  • 88.

    Obase K, Douhan GW, Matsuda Y, Smith ME. Progress and challenges in understanding the biology, diversity, and biogeography of Cenococcum geophilum. Biogeography of Mycorrhizal Symbiosis. Springer International Publishing; Cham, Switzerland, 2017. pp 299–317.

  • 89.

    Chapela IH, Osher LJ, Horton TR, Henn MR. Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem. 2001;33:1733–40.

    CAS  Google Scholar 

  • 90.

    Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? N. Phytol. 2003;157:475–92.

    Google Scholar 

  • 91.

    Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. N. Phytol. 2014;205:1525–36.

    Google Scholar 

  • 92.

    Jairus T, Mpumba R, Chinoya S, Tedersoo L. Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations. N. Phytol. 2011;192:179–87.

    Google Scholar 

  • 93.

    Buyck B. The edible mushrooms of Madagascar: an evolving enigma. Econ Bot. 2008;62:509–20.

    Google Scholar 

  • 94.

    Pennington HG, Bidartondo MI, Barsoum N. A few exotic mycorrhizal fungi dominate eucalypts planted in England. Fungal Ecol. 2011;4:299–302.

    Google Scholar 

  • 95.

    Kjøller R. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol Ecol. 2006;58:214–24.

    PubMed  Google Scholar 

  • 96.

    Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci. 2010;107:2093–8.

    CAS  PubMed  Google Scholar 

  • 97.

    Bashir H, Khalid AN. Morpho-anatomical and molecular characterisation of ectomycorrhizae associated with Eucalyptus species growing in different areas of the Punjab Province, Pakistan. Aust J Bot. 2014;62:689–97.

    Google Scholar 

  • 98.

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.

    PubMed  Google Scholar 

  • 99.

    Stevens PF. Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/.


  • Source: Ecology - nature.com

    Structural and functional shifts of soil prokaryotic community due to Eucalyptus plantation and rotation phase

    Peatland drainage in Southeast Asia adds to climate change