in

Chance and necessity in the pleiotropic consequences of adaptation for budding yeast

[adace-ad id="91168"]
  • 1.

    Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).

  • 2.

    Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).

    • Article
    • Google Scholar
  • 3.

    Bedhomme, S., Hillung, J. & Elena, S. F. Emerging viruses: why they are not jacks of all trades? Curr. Opin. Virol. 10, 1–6 (2015).

  • 4.

    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).

    • Article
    • Google Scholar
  • 5.

    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).

  • 6.

    Forister, M., Dyer, L. A., Singer, M., Stireman, J. O. III & Lill, J. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93, 981–991 (2012).

  • 7.

    Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856 (2007).

  • 8.

    Savolainen, O., Lascoux, M. & Merilä, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).

  • 9.

    Minor, P. D. Live attenuated vaccines: historical successes and current challenges. Virology 479, 379–392 (2015).

  • 10.

    Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

  • 11.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).

    • Article
    • Google Scholar
  • 12.

    Anderson, J. T., Willis, J. H. & Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 27, 258–266 (2011).

  • 13.

    Bono, L. M., Smith, L. B. Jr, Pfennig, D. W. & Burch, C. L. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26, 1720–1733 (2017).

  • 14.

    Elena, S. F. Local adaptation of plant viruses: lessons from experimental evolution. Mol. Ecol. 26, 1711–1719 (2017).

  • 15.

    Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).

  • 16.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1984).

  • 17.

    Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    • Article
    • Google Scholar
  • 18.

    Remold, S. Understanding specialism when the jack of all trades can be the master of all. Proc. Natl Acad. Sci. USA 279, 4861–4869 (2012).

    • Google Scholar
  • 19.

    Kawecki, T. J. Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am. Nat. 144, 833–838 (1994).

    • Article
    • Google Scholar
  • 20.

    Whitlock, M. C. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65–S77 (1996).

    • Article
    • Google Scholar
  • 21.

    Bono, L. M., Draghi, J. A. & Turner, P. E. Evolvability costs of niche expansion. Trends Genet. 36, 14–23 (2019).

  • 22.

    Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).

  • 23.

    Ågren, J., Oakley, C. G., McKay, J. K., Lovell, J. T. & Schemske, D. W. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 110, 21077–21082 (2013).

  • 24.

    Tiffin, P. & Ross-Ibarra, J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol. Evol. 29, 673–680 (2014).

  • 25.

    Cooper, V. S. & Lenski, R. E. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407, 736–739 (2000).

  • 26.

    Turner, P. E. & Elena, S. F. Cost of host radiation in an RNA virus. Genetics 156, 1465–1470 (2000).

  • 27.

    Zhong, S., Khodursky, A., Dykhuizen, D. E. & Dean, A. M. Evolutionary genomics of ecological specialization. Proc. Natl Acad. Sci. USA 101, 11719–11724 (2004).

  • 28.

    MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).

  • 29.

    Ostrowski, E. A., Rozen, D. E. & Lenski, R. E. Pleiotropic effects of beneficial mutations in Escherichia coli. Evolution 59, 2343–2352 (2005).

  • 30.

    Duffy, S., Turner, P. E. & Burch, C. L. Pleiotropic costs of niche expansion in the RNA bacteriophage ϕ6. Genetics 172, 751–757 (2006).

  • 31.

    Bennett, A. F. & Lenski, R. E. An experimental test of evolutionary trade-offs during temperature adaptation. Proc. Natl Acad. Sci. USA 104, 8649–8654 (2007).

  • 32.

    Dettman, J. R., Sirjusingh, C., Kohn, L. M. & Anderson, J. B. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447, 585–588 (2007).

  • 33.

    Lee, M.-C., Chou, H.-H. & Marx, C. J. Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution 63, 2816–2830 (2009).

  • 34.

    Wenger, J. W. et al. Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet. 7, e1002202 (2011).

  • 35.

    Jasmin, J.-N., Dillon, M. M. & Zeyl, C. The yield of experimental yeast populations declines during selection. Proc. Natl Acad. Sci. USA 279, 4382–4388 (2012).

    • Google Scholar
  • 36.

    Jasmin, J.-N. & Zeyl, C. Evolution of pleiotropic costs in experimental populations. J. Evol. Biol. 26, 1363–1369 (2013).

  • 37.

    Yi, X. & Dean, A. M. Bounded population sizes, fluctuating selection and the tempo and mode of coexistence. Proc. Natl Acad. Sci. USA 110, 16945–16950 (2013).

  • 38.

    Hietpas, R. T., Bank, C., Jensen, J. D. & Bolon, D. N. Shifting fitness landscapes in response to altered environments. Evolution 67, 3512–3522 (2013).

  • 39.

    Hong, K.-K. & Nielsen, J. Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose. Metab. Eng. 16, 78–86 (2013).

  • 40.

    Rodríguez-Verdugo, A., Carrillo-Cisneros, D., González-González, A., Gaut, B. S. & Bennett, A. F. Different tradeoffs result from alternate genetic adaptations to a common environment. Proc. Natl Acad. Sci. USA 111, 12121–12126 (2014).

  • 41.

    Schick, A., Bailey, S. F. & Kassen, R. Evolution of fitness trade-offs in locally adapted populations of Pseudomonas fluorescens. Am. Nat. 186, S48–S59 (2015).

  • 42.

    Leiby, N. & Marx, C. J. Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli. PLoS Biol. 12, e1001789 (2014).

  • 43.

    McGee, L. W. et al. Payoffs, not tradeoffs, in the adaptation of a virus to ostensibly conflicting selective pressures. PLoS Genet. 10, e1004611 (2014).

  • 44.

    Fraebel, D. T. et al. Environment determines evolutionary trajectory in a constrained phenotypic space. eLife 6, e24669 (2017).

  • 45.

    Lalić, J., Cuevas, J. M. & Elena, S. F. Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet. 7, e1002378 (2011).

  • 46.

    Li, C. & Zhang, J. Multi-environment fitness landscapes of a tRNA gene. Nat. Ecol. Evol. 2, 1025–1032 (2018).

  • 47.

    Selmecki, A. M. et al. Polyploidy can drive rapid adaptation in yeast. Nature 519, 349–352 (2015).

  • 48.

    Gerstein, A. C., Chun, H.-J. E., Grant, A. & Otto, S. P. Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet. 2, e145 (2006).

  • 49.

    Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596 (2016).

  • 50.

    Voordeckers, K. et al. Adaptation to high ethanol reveals complex evolutionary pathways. PLoS Genet. 11, e1005635 (2015).

  • 51.

    Harari, Y., Ram, Y. & Kupiec, M. Frequent ploidy changes in growing yeast cultures. Curr. Genet. 64, 1001–1004 (2018).

  • 52.

    Wickner, R. B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Microbiol. 46, 347–375 (1992).

  • 53.

    Vagnoli, P., Musmanno, R. A., Cresti, S., DiMaggio, T. & Coratza, G. Occurrence of killer yeasts in spontaneous wine fermentations from the tuscany region of italy. Appl. Environ. Microbiol. 59, 4037–4043 (1993).

  • 54.

    Schmitt, M. J. & Breinig, F. Yeast viral killer toxins: lethality and self-protection. Nat. Rev. Microbiol. 4, 212–221 (2006).

  • 55.

    Greig, D. & Travisano, M. Density-dependent effects on allelopathic interactions in yeast. Evolution 62, 521–527 (2008).

  • 56.

    Pieczynska, M. D., de Visser, J. A. G. & Korona, R. Incidence of symbiotic dsRNA killer viruses in wild and domesticated yeast. FEMS Yeast Res. 13, 856–859 (2013).

  • 57.

    Kandel, J. S. in Viruses of Fungi and Simple Eukaryotes (eds Koltin, Y. & Leibowitz, M. J.) Ch. 11 (CRC Press, 1988).

  • 58.

    Schmitt, M. J. & Breinig, F. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol. Rev. 26, 257–276 (2002).

  • 59.

    Buskirk, S. W., Rokes, A. B. & Lang, G. I. Adaptive evolution of a rock-paper-scissors sequence along a direct line of descent. Preprint at bioRxiv https://doi.org/10.1101/700302 (2019).

  • 60.

    Liu, H. & Zhang, J. Yeast spontaneous mutation rate and spectrum vary with environment. Curr. Biol. 29, 1584–1591 (2019).

  • 61.

    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    • Article
    • Google Scholar
  • 62.

    Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).

  • 63.

    Tikhonov, M., Kachru, S. & Fisher, D. S. Modeling the interplay between plastic tradeoffs and evolution in changing environments. Preprint at bioRxiv https://doi.org/10.1101/711531 (2019).

  • 64.

    Lang, G. I. & Murray, A. W. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178, 67–82 (2008).

  • 65.

    Lang, G. I., Botstein, D. & Desai, M. M. Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188, 647–661 (2011).

  • 66.

    Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

  • 67.

    Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

  • 68.

    Jerison, E. R. et al. Genetic variation in adaptability and pleiotropy in budding yeast. eLife 6, e27167 (2017).

  • 69.

    Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

  • 70.

    Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics: Laboratory Manual (Cold Spring Harbor, 1981).

  • 71.

    Storici, F., Lewis, L. K. & Resnick, M. A. In vivo site-directed mutagenesis using oligonucleotides. Nat. Biotechnol. 19, 773–776 (2001).


  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels