in

Expert assessment of future vulnerability of the global peatland carbon sink

[adace-ad id="91168"]
  • 1.

    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).

    CAS  Article  Google Scholar 

  • 2.

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  • 3.

    Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Article  Google Scholar 

  • 4.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  • 5.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Article  Google Scholar 

  • 6.

    Frolking, S., Roulet, N. & Fuglestvedt, S. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. 111, G01008 (2006).

    Google Scholar 

  • 7.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 8.

    Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    CAS  Article  Google Scholar 

  • 9.

    Kleinen, T., Brovkin, V. & Schuldt, R. J. A dynamic model of wetland extent and peat accumulation: results for the Holocene. Biogeosciences 9, 235–248 (2012).

    Article  Google Scholar 

  • 10.

    Müller, J. & Joos, F. Peatland area and carbon over the past 21 000 years – a global process based model investigation. Biogeosci. Discuss. Preprint at https://doi.org/10.5194/bg-2020-110 (2020).

  • 11.

    Todd-Brown, K. E. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

    Article  Google Scholar 

  • 12.

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    CAS  Article  Google Scholar 

  • 13.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    CAS  Article  Google Scholar 

  • 14.

    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Article  Google Scholar 

  • 15.

    Rommain, R. et al. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Glob. Change Biol. 24, 5518–5533 (2018).

    Article  Google Scholar 

  • 16.

    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Article  Google Scholar 

  • 17.

    Warren, M., Frolking, S., Zhaohua, D. & Kurnianto, S. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation. Mitig. Adapt. Strateg. Glob. Chang. 22, 1041–1061 (2017).

    Article  Google Scholar 

  • 18.

    Parish F. et al (eds) Assessment on Peatlands, Biodiversity and Climate Change: Main Report (Global Environment Centre and Wetlands International, 2008).

  • 19.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Nugent, K. A. et al. Prompt active restoration of peatlands substantially reduces climate impact. Environ. Res. Lett. 14, 124030 (2019).

    CAS  Article  Google Scholar 

  • 21.

    Günther, A. A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Article  CAS  Google Scholar 

  • 22.

    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Article  Google Scholar 

  • 23.

    Bonn, A. et al. (eds) Peatland Restoration and Ecosystems: Science, Policy, and Practice (Cambridge Univ. Press, 2016).

  • 24.

    Seppälä, M. Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology 52, 141–148 (2003).

    Article  Google Scholar 

  • 25.

    Treat, C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. USA 116, 4822–4827 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Beilman, D. W., MacDonald, G. M., Smith, L. C. & Reimer, P. J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochem. Cycles 23, GB1012 (2009).

    Article  CAS  Google Scholar 

  • 27.

    Loisel, J., Gallego-Sala, A. V. & Yu, Z. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 9, 2737–2746 (2012).

    CAS  Article  Google Scholar 

  • 28.

    Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).

    Article  CAS  Google Scholar 

  • 29.

    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).

    Article  CAS  Google Scholar 

  • 30.

    Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C. & Cadillo-Quiroz, H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl Acad. Sci. USA 115, 12407–12412 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: interactions between forest type and peat moisture conditions. Geoderma 324, 47–55 (2018).

    Article  CAS  Google Scholar 

  • 32.

    Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).

    Article  Google Scholar 

  • 33.

    Carlson, K. M., Goodman, L. K. & May-Tobin, C. C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 074006 (2015).

    Article  CAS  Google Scholar 

  • 34.

    Hoyt, A. M. et al. CO2 emissions from an undrained tropical peatland: interacting influences of temperature, shading and water table depth. Glob. Change Biol. 25, 2885–2899 (2019).

    Article  Google Scholar 

  • 35.

    Freeman, C., Ostle, N. & Kang, H. An enzymatic ‘latch’ on a global carbon store. Nature 409, 149 (2001).

    CAS  Article  Google Scholar 

  • 36.

    Lund, M., Christensen, T. R., Lindroth, A. & Schubert, P. Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland. Environ. Res. Lett. 7, 045704 (2012).

    Article  Google Scholar 

  • 37.

    Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. USA 114, E5187–E5196 (2017).

    CAS  Google Scholar 

  • 38.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    CAS  Article  Google Scholar 

  • 39.

    Henman, J. & Poulter, B. Inundation of freshwater peatlands by sea level rise: uncertainty and potential carbon cycle feedbacks. J. Geophys. Res. Atmos. 113, G01011 (2008).

    Article  CAS  Google Scholar 

  • 40.

    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–96 (2019).

    CAS  Article  Google Scholar 

  • 41.

    Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).

    Article  Google Scholar 

  • 42.

    Packalen, M. S. & Finkelstein, S. A. Quantifying Holocene variability in carbon uptake and release since peat initiation in the Hudson Bay Lowlands, Canada. Holocene 24, 1063–1074 (2014).

    Article  Google Scholar 

  • 43.

    Grundling P.-L. The role of sea-level rise in the formation of peatlands in Maputaland. Boletim Geológico (Ministerio dos Recursos Minerais e Energia, Direccao Geral de Geologia Mozambique) 43, 58–67 (2004).

  • 44.

    Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

    CAS  Article  Google Scholar 

  • 45.

    Briggs, J. et al. Influence of climate and hydrology on carbon in an early Miocene peatland. Earth Planet. Sci. Lett. 253, 445–454 (2007).

    CAS  Article  Google Scholar 

  • 46.

    Lähteenoja, O. et al. The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob. Change Biol. 18, 164–178 (2012).

    Article  Google Scholar 

  • 47.

    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    CAS  Article  Google Scholar 

  • 48.

    Whittle, A. & Gallego-Sala, A. V. Vulnerability of the peatland carbon sink to sea-level rise. Sci. Rep. 6, 28758 (2016).

    CAS  Article  Google Scholar 

  • 49.

    Blankespoor, B., Dasgupta, S. & Laplante, B. Sea-level rise and coastal wetlands. Ambio 43, 996–1005 (2014).

    Article  Google Scholar 

  • 50.

    Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. Glob. Planet. Change 139, 15–30 (2016).

    Article  Google Scholar 

  • 51.

    Zuidhoff, F. S. & Kolstrup, E. Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960–1997. Permafr. Periglac. Process. 11, 55–69 (2000).

    Article  Google Scholar 

  • 52.

    Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).

    Article  Google Scholar 

  • 53.

    Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11, 1–16 (2017).

    Article  Google Scholar 

  • 54.

    Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Change 7, 507–511 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Bubier, J., Moore, T., Bellisario, L., Comer, N. T. & Crill, P. M. Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochem. Cycles 9, 455–470 (1995).

    CAS  Article  Google Scholar 

  • 56.

    Christensen, T. R. et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).

    Article  CAS  Google Scholar 

  • 57.

    Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).

    Article  Google Scholar 

  • 58.

    O’Donnell, J. A. et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15, 213–229 (2012).

    Article  CAS  Google Scholar 

  • 59.

    Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).

    Article  Google Scholar 

  • 60.

    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    CAS  Article  Google Scholar 

  • 61.

    Jones, M. C., Grosse, G., Jones, B. M. & Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice‐rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 117, G00M07 (2012).

    Google Scholar 

  • 62.

    Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Article  CAS  Google Scholar 

  • 63.

    Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J. & Scott, K. D. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob. Change Biol. 13, 1922–1934 (2007).

    Article  Google Scholar 

  • 64.

    Rossi, S. et al. FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Climatic Change 135, 699–711 (2016).

    CAS  Article  Google Scholar 

  • 65.

    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

    CAS  Article  Google Scholar 

  • 66.

    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. USA 113, 9204–9209 (2016).

    CAS  Article  Google Scholar 

  • 67.

    Gaveau, D. L. A. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112 (2014).

    CAS  Article  Google Scholar 

  • 68.

    Lyu, Z. et al. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Ecol. Appl. 28, 1377–1395 (2018).

    Article  Google Scholar 

  • 69.

    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).

    Article  CAS  Google Scholar 

  • 70.

    Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).

    Article  Google Scholar 

  • 71.

    Zaccone, C. et al. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochim. Cosmochim. Acta 137, 134–146 (2014).

    CAS  Article  Google Scholar 

  • 72.

    Kettridge, N. et al. Burned and unburned peat water repellency: implications for peatland evaporation following wildfire. J. Hydrol. 513, 335–341 (2014).

    Article  Google Scholar 

  • 73.

    Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc. Natl Acad. Sci. USA 108, 5127–5132 (2011).

    CAS  Article  Google Scholar 

  • 74.

    Rooney, R. C., Bayley, S. E. & Schindler, D. W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc. Natl Acad. Sci. USA 109, 4933–4937 (2012).

    CAS  Article  Google Scholar 

  • 75.

    Turunen, J. Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ. Res. 13, 319–334 (2008).

    CAS  Google Scholar 

  • 76.

    Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    CAS  Article  Google Scholar 

  • 77.

    Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).

    CAS  Article  Google Scholar 

  • 78.

    Tuittila, E.-S. et al. Methane dynamics of a restored cut-away peatland. Glob. Change Biol. 6, 569–581 (2000).

    Article  Google Scholar 

  • 79.

    Waddington, J. M. & Day, S. M. Methane emissions from a peatland following restoration. J. Geophys. Res. Biogeosci. 112, G03018 (2007).

    Article  CAS  Google Scholar 

  • 80.

    Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).

    CAS  Article  Google Scholar 

  • 81.

    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem. Cycles 20, GB4003 (2006).

    Article  CAS  Google Scholar 

  • 82.

    Bubier, J. L., Moore, T. R. & Bledzki, L. A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Change Biol. 13, 1168–1186 (2007).

    Article  Google Scholar 

  • 83.

    Juutinen, S. et al. Responses of mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: height growth, ground cover, and CO2 exchange. Botany 94, 127–138 (2016).

    CAS  Article  Google Scholar 

  • 84.

    Wieder, R. K. et al. Experimental nitrogen addition alters structure and function of a boreal bog: critical load and thresholds revealed. Ecol. Monogr. 89, e01371 (2019).

    Article  Google Scholar 

  • 85.

    Limpens, J. et al. Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol. 191, 496–507 (2011).

    CAS  Article  Google Scholar 

  • 86.

    Larmola, T. et al. Vegetation feedbacks of nutrient deposition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 19, 3729–3739 (2013).

    Article  Google Scholar 

  • 87.

    Pinsonneault, A. J., Moore, T. R. & Roulet, N. T. Effects of long-term fertilization on peat stoichiometry and associated microbial enzyme activity in an ombrotrophic bog. Biogeochemistry 129, 149–164 (2016).

    CAS  Article  Google Scholar 

  • 88.

    Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl Acad. Sci. USA 103, 19386–19389 (2006).

    CAS  Article  Google Scholar 

  • 89.

    Juutinen, S. et al. Long-term nutrient addition increased CH4 emission from a bog through direct and indirect effects. Sci. Rep. 8, 3838 (2018).

    Article  CAS  Google Scholar 

  • 90.

    Olid, C., Nilsson, M. B., Eriksson, T. & Klaminder, J. The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: decadal effects assessed using 210Pb peat chronologies. J. Geophys. Res. Biogeosci. 119, 392–403 (2014).

    CAS  Article  Google Scholar 

  • 91.

    Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).

    CAS  Article  Google Scholar 

  • 92.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Article  Google Scholar 

  • 93.

    Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L. & Parmentier, F.-J. W. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci. Rep. 9, 1146 (2019).

    Article  CAS  Google Scholar 

  • 94.

    Mach, K. J., Mastrandrea, M. D., Freeman, P. T. & Field, C. B. Unleashing expert judgment in assessment. Glob. Environ. Change 44, 1–14 (2017).

    Article  Google Scholar 

  • 95.

    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119, 359–374 (2013).

    CAS  Article  Google Scholar 

  • 96.

    Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 116, 11195–11200 (2019).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

    Field geology at a distance