in

Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases

[adace-ad id="91168"]
  • 1.

    Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. A. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40(1), 111–124 (2003).

    Article  Google Scholar 

  • 2.

    Sutherst, R. W. et al. Pests under global change—meeting your future landlords? In Terrestrial Ecosystems in a Changing World (eds Canadell, J. G. et al.) 211–223 (Springer, Berlin, 2007).

    Google Scholar 

  • 3.

    Sutherst, R.W., Arthropods as disease vectors in a changing environment. In Ciba Foundation Symposium 175—Environmental Change and Human Health (Wiley, 2007), pp. 124–145.

  • 4.

    Vogl, G. et al. Modelling the spread of ragweed: Effects of habitat, climate change and diffusion. Eur. Phys. J. Spec. Top. 161, 167–173 (2008).

    Article  Google Scholar 

  • 5.

    Scherm, H., Climate change: can we predict the impacts on plant pathology and pest management?  Presented at the Annual Meeting of the Canadian-Phytopathological-Society, Montreal, Canada, 2003 (unpublished), pp. 267–273.

  • 6.

    Kocmankova, E. et al. Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: A novel approach. J. Agric. Sci. 149, 185–195 (2011).

    Article  Google Scholar 

  • 7.

    Mardulyn, P. et al. Climate change and the spread of vector-borne diseases: Using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy. Mol. Ecol. 22(9), 2456–2466 (2013).

    PubMed  Article  Google Scholar 

  • 8.

    Ziter, C., Robinson, E. A. & Newman, J. A. Climate change and voltinism in Californian insect pest species: Sensitivity to location, scenario and climate model choice. Glob. Change Biol. 18(9), 2771–2780 (2012).

    ADS  Article  Google Scholar 

  • 9.

    Estay, S. A., Lima, M. & Labra, F. A. Predicting insect pest status under climate change scenarios: Combining experimental data and population dynamics modelling. J. Appl. Entomol. 113, 491–499 (2009).

    Article  Google Scholar 

  • 10.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Parmesan, C. et al. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 108(1), 58–75 (2005).

    Article  Google Scholar 

  • 12.

    Kerdelhue, C. et al. Quaternary history and contemporary patterns in a currently expanding species. BMC Evol. Biol. 9, 5 (2009).

    Article  CAS  Google Scholar 

  • 13.

    Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperature. Ecol. Appl. 15(6), 2084–2096 (2005).

    Article  Google Scholar 

  • 14.

    Rahmstorf, S. et al. Recent climate observations compared to projections. Science 316(5825), 709 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Mann, M. E. & Lees, J. M. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33(3), 409–445 (1996).

    ADS  Article  Google Scholar 

  • 16.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  • 17.

    Bloomfield, P. & Nychka, D. Climate spectra and detecting climate change. Clim. Change 21(3), 275–287 (1992).

    ADS  Article  Google Scholar 

  • 18.

    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193), 353–357 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2(2), 220–237 (2011).

    Article  Google Scholar 

  • 20.

    FAOSTAT. Crop Production (Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  • 21.

    Nweke, F. I. New Challenges in the Cassava Transformation in Nigeria and Ghana (International Food Policy Research Institute, Washington, 2004).

    Google Scholar 

  • 22.

    Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327(5967), 812–818 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    El-Sharkawy, M. A. Cassava biology and physiology. Plant Mol. Biol. 56(4), 481–501 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B. & Navarro-Racines, C. Is Cassava the answer to African climate change adaptation?. Trop. Plant Biol. 5(1), 9–29 (2012).

    Article  Google Scholar 

  • 25.

    Howeler, R., Lutaladio, N. & Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification (FAO, Rome, 2013).

    Google Scholar 

  • 26.

    Alicai, T. et al. Re-emergence of Cassava Brown Streak Disease in Uganda. Plant Dis. 91(1), 24–29 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W. & Thresh, J. M. Dual begomovirus infections and high Bemisia tabaci populations: Two factors driving the spread of a cassava mosaic disease pandemic. Plant. Pathol. 53, 577–584 (2004).

    Article  Google Scholar 

  • 28.

    Legg, J. P. et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 186, 61–75 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Thresh, J. et al. African cassava mosaic virus disease: The magnitude of the problem. Afr. J. Root Tuber Crops 2(1/2), 13–19 (1997).

    Google Scholar 

  • 30.

    Tajebe, L. S. et al. Abundance, diversity and geographic distribution of cassava mosaic disease pandemic-associated Bemisia tabaci in Tanzania. J. Appl. Entomol. 5, 20 (2014).

    Google Scholar 

  • 31.

    Ndunguru, J. et al. Analyses of twelve new whole genome sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, supercomputing and evidence for further speciation. PLoS One 10(10), e0139321 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Basavaprabhu, L. P., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: A threat to food security in Africa. J. Gen. Virol. 96(5), 956–968 (2015).

    Article  Google Scholar 

  • 33.

    Jeremiah, S. C. et al. The dynamics and environmental influence on interactions between Cassava Brown Streak Disease and the whitefly,. Phytopathology 105(5), 646–655 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Legg, J., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv. Virus Res. 67, 355–418 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    FAO, Cassava Diseases in central, eastern and southern Africa: Strategic programme framework 2010–2015. (2009).

  • 36.

    Zhou, X. et al. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78(8), 2101–2111 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Legg, J. P., French, R., Rogan, D., Okao-Okuja, G. & Brown, J. K. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol. 11(7), 1219–1229 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Garrett, K.A., Thomas-Sharma, S., Forbes, G.A., & Nopsa, J.H., Climate change and plant pathogen invasions. In Invasive Species and Global Climate Change (eds Ziska, L. H., Dukes, J. S.) 22 (2014).

  • 39.

    Tay, W. T. et al. The trouble with MEAM2: Implications of pseudogenes on species delimitation in the globally invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex. Genome Biol. Evol. 9(10), 2732–2738 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Macfadyen, S. et al. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: A review of the factors determining abundance. Bull. Entomol. Res. 20, 1–18 (2018).

    Google Scholar 

  • 41.

    Sseruwagi, P., Sserubombwe, W., Legg, J., Ndunguru, J. & Thresh, J. Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: A review. Virus Res. 100(1), 129–142 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Boykin, L. M. et al. Review and guide to a future naming system of African Bemisia tabaci species. Syst. Entomol. 20, 20 (2018).

    Google Scholar 

  • 43.

    Mugerwa, H. et al. African ancestry of New World, Bemisia tabaci-whitefly species. Sci. Rep. 8(1), 2734 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Boykin, L. M., Armstrong, K. F., Kubatko, L. & De Barro, P. J. Species delimitation and global biosecurity. Evol. Bioinform. 8(2), 1–37 (2011).

    Google Scholar 

  • 45.

    De Barro, P. J., Liu, S.-S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 46.

    Boykin, L. M. Bemisia tabaci nomenclature: Lessons learned. Pest Manag. Sci. 70(10), 1454–1459 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Kalyebi, A. et al. African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS One 13(10), e0204862 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Herrera Campo, B., Hyman, G. & Bellotti, A. Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Secur. 3(3), 329–345 (2011).

    Article  Google Scholar 

  • 49.

    Webber, B. L. et al. Modelling horses for novel climate courses: Insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Div. Distrib. 17(5), 978–1000 (2011).

    Article  Google Scholar 

  • 50.

    Sutherst, R. W. & Bourne, A. S. Modelling non-equilibrium distributions of invasive species: A tale of two modelling paradigms. Biol. Invas. 11(6), 1231–1237 (2009).

    Article  Google Scholar 

  • 51.

    Ramos, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS One 13(6), e0198925 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).

    Article  Google Scholar 

  • 53.

    Kriticos, D. J. et al. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases (CSIRO, Canberra, 2015).

    Google Scholar 

  • 54.

    Sutherst, R. W. & Maywald, G. F. A computerised system for matching climates in ecology. Agric. Ecosyst. Environ. 13, 281–299 (1985).

    Article  Google Scholar 

  • 55.

    Yonow, T., Hattingh, V. & de Villiers, M. CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Prot. 44, 18–28 (2013).

    Article  Google Scholar 

  • 56.

    Ireland, K. B., Hardy, G. E. S. J. & Kriticos, D. J. Combining inferential and deductive approaches to estimate the potential geographical range of the invasive plant pathogen, Phytophthora ramorum. PLoS One 8, 5 (2013).

    Google Scholar 

  • 57.

    Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 20, 20 (2017).

    Google Scholar 

  • 58.

    Macfadyen, S. & Kriticos, D. J. Modelling the geographical range of a species with a variable life-history. PLoS One 7(7), e40313 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Yonow, T. & Sutherst, R. W. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 49, 935–953 (1998).

    Article  Google Scholar 

  • 60.

    De Villiers, M. et al. The potential distribution of Bactrocera dorsalis: Considering phenology and irrigation patterns. Bull. Entomol. Res. 106, 19–33 (2016).

    PubMed  Article  Google Scholar 

  • 61.

    De Villiers, M., Hattingh, V. & Kriticos, D. J. Combining field phenological observations with distribution data to model the potential range distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae). Bull. Entomol. Res. 103, 60–73 (2012).

    PubMed  Article  Google Scholar 

  • 62.

    Zalucki, M. P. & Furlong, M. J. Forecasting Helicoverpa populations in Australia: A comparison of regression based models and a bio-climatic based modelling approach. Insect Sci. 12(1), 45–56 (2005).

    Article  Google Scholar 

  • 63.

    Zalucki, M. P. & Van Klinken, R. D. Predicting population dynamics of weed biological control agents: Science or gazing into crystal balls?. Aust. J. Entomol. 45, 331–344 (2006).

    Article  Google Scholar 

  • 64.

    Kriticos, D. J., De Barro, P. J., Yonow, T., Ota, N. & Sutherst, R. W. The potential geographical distribution and phenology of Bemisia tabaci Middle East Asia Minor 1, considering irrigation and glasshouse production. Bull. Entomol. Res. 110(5), 567–576 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Kriticos, D. J. et al. CliMond: Global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).

    Article  Google Scholar 

  • 66.

    Hutchinson, G.E., Presented at the Cold Spring Symposium on Quantitative Biology, Yale University, New Haven, Connecticutt, USA, 1957 (unpublished).

  • 67.

    Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).

    Article  Google Scholar 

  • 68.

    Peterson, A. T., Soberon, J., Pearson, R. G. & Martinez-Meyer, E. Ecological Niches and Geographic Distributions (Princeton University Press, Princeton, 2011).

    Google Scholar 

  • 69.

    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 70.

    Carter, R. N. & Prince, S. D. Epidemic models used to explain biogeographical distribution limits. Nature 293, 644–645 (1981).

    ADS  Article  Google Scholar 

  • 71.

    Alicai, T. et al. Expansion of the cassava brown streak pandemic in Uganda revealed by annual field survey data for 2004 to 2017. Sci. Data 6(1), 327 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Macfadyen, S. et al. Landscape factors and how they influence whitefly pests in cassava fields across East Africa. Landsc. Ecol. 20, 20 (2020).

    Google Scholar 

  • 73.

    Shelford, V. E. The Ecology of North America (University of Illinois Press, Urbana, 1963).

    Google Scholar 

  • 74.

    Shelford, V. E. A comparison of the responses of animals in gradients of environmental factors with particular reference to the method of reaction of representatives of the various groups from protozoa to mammals. Science 48, 225–230 (1918).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 75.

    Shelford, V. E. & Deere, E. O. The reactions of certain animals to gradients of evaporating power of air: A study in experimental ecology. Biol. Bull. 25, 79–120 (1913).

    Article  Google Scholar 

  • 76.

    van der Ploeg, R. R., Böhm, W. & Kirkham, M. B. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J. 63, 1055–1062 (1999).

    Article  Google Scholar 

  • 77.

    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25(6), 693–712 (2005).

    Article  Google Scholar 

  • 78.

    New, M., Hulme, M. & Jones, P. Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 13(13), 2217–2238 (2000).

    ADS  Article  Google Scholar 

  • 79.

    Sseruwagi, P. et al. Colonization of non-cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. Entomol. Exp. Appl. 119(2), 145–153 (2006).

    CAS  Article  Google Scholar 

  • 80.

    Otim-Nape, G., Alicai, T. & Thresh, J. Changes in the incidence and severity of cassava mosaic virus disease, varietal diversity and cassava production in Uganda. Ann. Appl. Biol. 138(3), 313–327 (2001).

    Article  Google Scholar 

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

    Google Scholar 

  • 82.

    Castle, S., Henneberry, T. & Toscano, N. Suppression of Bemisia tabaci (Homoptera: Aleyrodidae) infestations in cantaloupe and cotton with sprinkler irrigation. Crop Prot. 15(7), 657–663 (1996).

    Article  Google Scholar 

  • 83.

    Alemandri, V. et al. Three members of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex occur sympatrically in Argentine horticultural crops. J. Econ. Entomol. 108(2), 405–413 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Mitchell, J. et al., Detection of climate change and attribution of causes in IPCC 2001: Climate Change 2001. The Climate change Contribution of Working Group I to the Third Assessment Report of the Intergovemmental Panel on Climate Change, edited by J Houghton et al. (2001), Vol. 159.

  • 85.

    McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13(7), e1005654 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 86.

    Fauquet, C. & Fargette, D. African cassava mosaic virus: Etiology, epidemiology and control. Plant Dis. 74(6), 404–411 (1990).

    Article  Google Scholar 

  • 87.

    Aregbesola, O. Z., Legg, J. P., Sigsgaard, L., Lund, O. S. & Rapisarda, C. Potential impact of climate change on whiteflies and implications for the spread of vectored viruses. J. Pest. Sci. 20, 20 (2018).

    Google Scholar 

  • 88.

    Hilje, L., Costa, H. S. & Stansly, P. A. Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot. 20(9), 801–812 (2001).

    Article  Google Scholar 

  • 89.

    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19(10), 535–544 (2004).

    PubMed  Article  Google Scholar 

  • 90.

    Chakraborty, S., Tiedemann, A. V. & Teng, P. S. Climate change: Potential impact on plant diseases. Environ. Pollut. 108(3), 317–326 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 91.

    Jones, R. A. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141(2), 113–130 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 92.

    Canto, T., Aranda, M. A. & Fereres, A. Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Glob. Change Biol. 15(8), 1884–1894 (2009).

    ADS  Article  Google Scholar 

  • 93.

    Fargette, D., Jeger, M., Fauquet, C. & Fishpool, L. Analysis of temporal disease progress of African cassava mosaic virus. Phytopathology 84(1), 91–98 (1994).

    Article  Google Scholar 

  • 94.

    Pardey, P. G. et al. Right-sizing stem rust research. Science 340, 147–148 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 95.

    Dodson, B. Porous borders: Gender and migration in Southern Africa. S. Afr. Geogr. J. 82(1), 40–46 (2000).

    Article  Google Scholar 

  • 96.

    Ikome, F.N., Africa’s international borders as potential sources of conflict and future threats to peace and security (2012).


  • Source: Ecology - nature.com

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents