in

Light intensity regulates flower visitation in Neotropical nocturnal bees

[adace-ad id="91168"]
  • 1.

    Michener, C. D. The Bees of the World (The Johns Hopkins University Press, Baltimore, 2007).

    Google Scholar 

  • 2.

    Wcislo, W. T. & Tierney, S. M. Behavioural environments and niche construction: The evolution of dim-light foraging in bees. Biol. Rev. 84, 19–37 (2009).

    PubMed  Google Scholar 

  • 3.

    Warrant, E. J. Nocturnal bees. Curr. Biol. 17, 991–992 (2007).

    Google Scholar 

  • 4.

    Warrant, E. J. Seeing in the dark: Vision and visual behaviour in nocturnal bees and wasps. J. Exp. Biol. 211, 1737–1746 (2008).

    PubMed  Google Scholar 

  • 5.

    Somanathan, H., Borges, R. M., Warrant, E. J. & Kelber, A. Visual ecology of Indian carpenter bees I: Light intensities and flight activity. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 194, 97–107 (2008).

    Google Scholar 

  • 6.

    Somanathan, H., Saryan, P. & Balamurali, G. S. Foraging strategies and physiological adaptations in large carpenter bees. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 205, 387–398 (2019).

    Google Scholar 

  • 7.

    Engel, M. S. Classification of the bee tribe Augochlorini (Hymenoptera: Halictidae). Bull. Am. Museum Nat. Hist. 250, 1–90 (2000).

    Google Scholar 

  • 8.

    Silveira, F. A., Melo, G. A. R. & Almeida, E. A. B. Abelhas Brasileiras: Sistemática e Identificação (Fundação Araucária, Belo Horizonte, 2002).

    Google Scholar 

  • 9.

    Wcislo, W. T. et al. The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): An escape from competitors and enemies?. Biol. J. Linn. Soc. 83, 377–387 (2004).

    Google Scholar 

  • 10.

    Carvalho, A. T., Maia, A. C. D., Ojima, P. Y., dos Santos, A. A. & Schlindwein, C. Nocturnal bees are attracted by widespread floral scents. J. Chem. Ecol. 38, 315–318 (2012).

    CAS  PubMed  Google Scholar 

  • 11.

    Janzen, D. Notes on nesting and foraging behavior of Megalopta (Hymenoptera: Halictidae) in Costa Rica. J. Kansas Entomol. Soc. 41, 342–350 (1968).

    Google Scholar 

  • 12.

    Roberts, R. B. Biology of the crepuscular bee Ptiloglossa guinnae N. sp. with notes on associated bees, mites, and yeasts. J. Kansas Entomol. Soc. 44, 283–294 (1971).

    Google Scholar 

  • 13.

    Rozen, J. G. Nesting biology of Diphaglossine bees (Hymenoptera, Colletidae). Am. Museum Novit. 2786, 1–33 (1984).

    Google Scholar 

  • 14.

    Santos, L. M., Tierney, S. M. & Wcislo, W. T. Nest descriptions of Megalopta aegis (Vachal) and M. guimaraesi Santos & Silveira (Hymenoptera, Halictidae) from the Brazilian Cerrado. Rev. Bras. Entomol. 54, 332–334 (2010).

    Google Scholar 

  • 15.

    Sarzetti, L., Genise, J., Sanchez, M. V., Farina, J. & Molina, A. Nesting behavior and ecological preferences of five Diphaglossinae species (Hymenoptera, Apoidea, Colletidae) from Argentina and Chile. J. Hymenopt. Res. 33, 63–82 (2013).

    Google Scholar 

  • 16.

    Wolda, H. & Roubik, D. W. Nocturnal bee abundance and seasonal bee activity in a Panamanian forest. Ecology 67, 426–433 (1986).

    Google Scholar 

  • 17.

    Linsley, E. G. & Cazier, M. A. Some competitive relationships among matinal and late afternoon foraging activities of Caupolicanine bees in Southeastern Arizona (Hymenoptera, Colletidae). J. Kansas Entomol. Soc. 43, 251–261 (1970).

    Google Scholar 

  • 18.

    Roulston, T. H. Hourly capture of two species of Megalopta (Hymenoptera: Apoidea; Halictidae) at black lights in Panama with notes on nocturnal foraging by bees. J. Kansas Entomol. Soc. 70, 189–196 (1997).

    Google Scholar 

  • 19.

    Smith, A. R., López Quintero, I. J., Moreno Patiño, J. E., Roubik, D. W. & Wcislo, W. T. Pollen use by Megalopta sweat bees in relation to resource availability in a tropical forest. Ecol. Entomol. 37, 309–317 (2012).

    Google Scholar 

  • 20.

    Dafni, A., Kevan, P. G. & Husband, B. C. Practical Pollination Biology (Enviroquest Ltd., Cambridge, 2005).

    Google Scholar 

  • 21.

    Somanathan, H. & Borges, R. M. Nocturnal pollination by the carpenter bee Xylocopa tenuiscapa (Apidae) and the effect of floral display on fruit set of Heterophragma quadriloculare (Bignoniaceae) in India. Biotropica 33, 78–89 (2001).

    Google Scholar 

  • 22.

    Contrera, F. A. L. & Nieh, J. C. The effect of ambient temperature on forager sound production and thoracic temperature in the stingless bee, Melipona panamica. Behav. Ecol. Sociobiol. 61, 887–897 (2007).

    Google Scholar 

  • 23.

    Willmer, P. G. Thermal constraints on activity patterns in nectar-feeding insects. Ecol. Entomol. 8, 455–469 (1983).

    Google Scholar 

  • 24.

    Linsley, E. G. The ecology of solitary bee. Hilgardia 27, 543–599 (1958).

    Google Scholar 

  • 25.

    Figueiredo-Mecca, G., Bego, L. R. & Nascimento, F. S. Foraging behavior of Scaptotrigona depilis (Hymenoptera, Apidae, Meliponini) and its relationship with temporal and abiotic factors. Sociobiology 60, 277–282 (2013).

    Google Scholar 

  • 26.

    Streinzer, M., Huber, W. & Spaethe, J. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini). J. Comp. Physiol. A 202, 643–655 (2016).

    Google Scholar 

  • 27.

    Linsley, E. G. Temporal patterns of flower visitation by solitary bees, with particular reference to the southwestern United States. J. Kansas Entomol. Soc. 51, 531–546 (1978).

    Google Scholar 

  • 28.

    Borges, R. M., Somanathan, H. & Kelber, A. Patterns and processes in nocturnal and crepuscular pollination services. Q. Rev. Biol. 91, 389–418 (2016).

    PubMed  Google Scholar 

  • 29.

    Warrant, E. J. Seeing better at night: Life style, eye design and the optimum strategy of spatial and temporal summation. Vis. Res. 39, 1611–1630 (1999).

    CAS  PubMed  Google Scholar 

  • 30.

    Warrant, E. J. et al. Nocturnal vision and landmark orientation in a tropical halictid bee. Curr. Biol. 14, 1309–1318 (2004).

    CAS  PubMed  Google Scholar 

  • 31.

    Warrant, E. Vision in the dimmest habitats on Earth. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 190, 765–789 (2004).

    Google Scholar 

  • 32.

    Warrant, E. & Dacke, M. Vision and visual navigation in nocturnal insects. Annu. Rev. Entomol. 56, 239–254 (2011).

    CAS  PubMed  Google Scholar 

  • 33.

    Rozenberg, G. V. Twilight (Springer, New York, 1966).

    Google Scholar 

  • 34.

    O’Carroll, D. C. & Warrant, E. J. Vision in dim light: Highlights and challenges. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160062 (2017).

    Google Scholar 

  • 35.

    Smith, A. R., Kitchen, S. M., Toney, R. M. & Ziegler, C. Is nocturnal foraging in a tropical bee an escape from interference competition?. J. Insect Sci. 17, 1–7 (2017).

    CAS  Google Scholar 

  • 36.

    Kapustjanskij, A., Streinzer, M., Paulus, H. F. & Spaethe, J. Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct. Ecol. 21, 1130–1136 (2007).

    Google Scholar 

  • 37.

    Lorenzi, H. Brazilian Trees: A Guide to the Identification and Cultivation of Brazilian Native Trees (Instituto Plantarum de Estudos da Flora, Nova Odessa, 2002).

    Google Scholar 

  • 38.

    Cordeiro, G. D., Pinheiro, M., Dötterl, S. & Alves-dos-Santos, I. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: A new nocturnal pollination system mediated by floral scent. Plant Biol. 19, 132–139 (2017).

    CAS  PubMed  Google Scholar 

  • 39.

    Kelber, A. et al. Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav. Ecol. 17, 63–72 (2006).

    Google Scholar 

  • 40.

    Polatto, L. P., Chaud-Netto, J. & Alves-Junior, V. V. Influence of abiotic factors and floral resource availability on daily foraging activity of bees. J. Insect Behav. 27, 593–612 (2014).

    Google Scholar 

  • 41.

    Willis, D. S. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).

    Google Scholar 

  • 42.

    Wcislo, W. T. & Cane, J. H. Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu. Rev. Entomol. 41, 257–286 (1996).

    CAS  PubMed  Google Scholar 

  • 43.

    Bellusci, S. & Marques, M. D. Circadian activity rhythm of the foragers of a eusocial bee (Scaptotrigona aff depilis, Hymenoptera, Apidae, Meliponinae) outside the nest. Biol. Rhythm Res. 32, 117–124 (2001).

    Google Scholar 

  • 44.

    Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: Circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160256 (2017).

    Google Scholar 

  • 45.

    Enright, J. T. Ecological aspects of endogenous rhythmicity. Annu. Rev. Ecol. Evol. Syst. 1, 221–238 (1970).

    Google Scholar 

  • 46.

    Shelly, T. E., Villalobos, E. M., Buchmann, S. L. & Cane, J. H. Temporal patterns of floral visitation for two bee species foraging on Solanum. J. Kansas Entomol. Soc. 66, 319–327 (1993).

    Google Scholar 

  • 47.

    Gottlieb, D., Keasar, T., Shmida, A. & Motro, U. Possible foraging benefits of bimodal daily activity in Proxylocopa olivieri (Lepeletier) (Hymenoptera: Anthophoridae). Environ. Entomol. 34, 417–424 (2005).

    Google Scholar 

  • 48.

    Franco, E. L. & Gimenes, M. Pollination of Cambessedesia wurdackii in Brazilian campo rupestre vegetation, with special reference to crepuscular bees. J. Insect Sci. 11, 1–13 (2011).

    Google Scholar 

  • 49.

    Oliveira, F. S., Ribeiro, M. H. M., Nunez, C. V. & de Albuquerque, M. C. Flowering phenology of Mouriri guianensis (Melastomataceae) and its interaction with the crepuscular bee Megalopta amoena (Halictidae) in the restinga of Lençóis Maranhenses National Park, Brazil. Acta Amaz. 46, 281–290 (2016).

    Google Scholar 

  • 50.

    Willmer, P. & Stone, G. Temperature and water relations in desert bees. J. Therm. Biol. 22, 453–465 (1997).

    Google Scholar 

  • 51.

    Krug, C. et al. Nocturnal bee pollinators are attracted to guarana flowers by their scents. Front. Plant Sci. 9, 1072 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Siqueira, E. et al. Pollination of Machaerium opacum (Fabaceae) by nocturnal and diurnal bees. Arthropod. Plant. Interact. 12, 633–645 (2018).

    Google Scholar 

  • 53.

    Orbán, L. L. & Plowright, C. M. S. Getting to the start line: How bumblebees and honeybees are visually guided towards their first floral contact. Insectes Soc. 61, 325–336 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Burger, H., Dotterl, S. & Ayasse, M. Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct. Ecol. 24, 1234–1240 (2010).

    Google Scholar 

  • 55.

    Milet-Pinheiro, P., Ayasse, M., Schlindwein, C., Dobson, H. E. M. & Dötterl, S. Host location by visual and olfactory floral cues in an oligolectic bee: Innate and learned behavior. Behav. Ecol. 23, 531–538 (2012).

    Google Scholar 

  • 56.

    Kantsa, A. et al. Community-wide integration of floral colour and scent in a Mediterranean scrubland. Nat. Ecol. Evol. 1, 1502–1510 (2017).

    PubMed  Google Scholar 

  • 57.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    ADS  Google Scholar 

  • 58.

    Michener, C. D. & Lange, R. B. Observations on the behavior of Brasilian halictid bees, III. Univ. Kansas Sci. Bull. 39, 473–505 (1958).

    Google Scholar 

  • 59.

    Meinel, A. B. & Meinel, M. P. Sunsets, Twilights, and Evening Skies (Cambridge University, Cambridge, 1991).

    Google Scholar 

  • 60.

    R Core Team, R. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. www.R-project.org (2017). Accessed 15 Dec 2017.

  • 61.

    Bolker, B. & R Core Team, R. bbmle: Tools for general maximum likelihood estimation. R Packag. version 1.0.20. https://CRAN.R-project.org/package=bbmle (2017). Accessed 15 Dec 2017.

  • 62.

    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R Packag. version 0.1.5. https://CRAN.R-project.org/package=DHARMa (2017). Accessed 15 Dec 2017.

  • 63.

    Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R Packag. version 0.7.4. https://CRAN.R-project.org/package=dplyr (2017). Accessed 15 Dec 2017.

  • 64.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

    Google Scholar 

  • 65.

    Sarkar, D. Lattice: Multivariate data visualization with R. R Packag. version 0.20–38. https://CRAN.R-project.org/package=lattice (2008). Accessed 15 Dec 2017.

  • 66.

    Sarkar, D. & Andrews, F. latticeExtra: Extra graphical utilities based on lattice. R Packag. version 0.6-28. https://CRAN.R-project.org/package=latticeExtra (2016). Accessed 15 Dec 2017.

  • 67.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 68.

    Kelley, D. & Richards, C. oce: Analysis of oceanographic data. R Packag. version 0.9-22. https://CRAN.R-project.org/package=oce (2017). Accessed 15 Dec 2017.

  • 69.

    Wickham, H. & Henry, L. tidyr: Easily tidy data with ‘spread()’ and ‘gather()’ functions. R Packag. version 0.8.0. https://CRAN.R-project.org/package=tidyr (2018). Accessed 15 Dec 2017.

  • 70.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Effects of different social experiences on emotional state in mice

    Linking microbial Sphagnum degradation and acetate mineralization in acidic peat bogs: from global insights to a genome-centric case study