in

More than one million barriers fragment Europe’s rivers

[adace-ad id="91168"]
  • 1.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Phil. Soc. 94, 849–873 (2019).

    Google Scholar 

  • 2.

    Grizzetti, B. et al. Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Sci. Total Environ. 671, 452–465 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Google Scholar 

  • 5.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  • 6.

    Carpenter, S. R., Stanley, E. H. & Zanden, M. J. V. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).

    Google Scholar 

  • 7.

    Fuller, M. R., Doyle, M. W. & Strayer, D. L. Causes and consequences of habitat fragmentation in river networks: river fragmentation. Ann. NY Acad. Sci. 1355, 31–51 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Van Looy, K., Tormos, T. & Souchon, Y. Disentangling dam impacts in river networks. Ecol. Indic. 37, 10–20 (2014).

    Google Scholar 

  • 9.

    Kemp, P. & O’Hanley, J. Procedures for evaluating and prioritising the removal of fish passage barriers: a synthesis. Fish. Manag. Ecol. 17, 297–322 (2010).

    Google Scholar 

  • 10.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • 11.

    Lehner, B. et al. Global Reservoir and Dam Database version 1 (GRanDv1) https://doi.org/10.7927/H4N877QK (NASA Socioeconomic Data and Applications Center, 2011).

  • 12.

    Mulligan, M., Soesbergen, A. V. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Garcia de Leaniz, C., Berkhuysen, A. & Belletti, B. Beware small dams, they can do damage too. Nature 570, 164 (2019).

    ADS  Google Scholar 

  • 14.

    Mantel, S. K., Rivers-Moore, N. & Ramulifho, P. Small dams need consideration in riverscape conservation assessments: small dams and riverscape conservation. Aqua. Conserv. Mar. Freshw. Ecosyst. 27, 748–754 (2017).

    Google Scholar 

  • 15.

    Lucas, M. C., Bubb, D. H., Jang, M.-H., Ha, K. & Masters, J. E. G. Availability of and access to critical habitats in regulated rivers: effects of low-head barriers on threatened lampreys. Freshw. Biol. 54, 621–634 (2009).

    Google Scholar 

  • 16.

    Birnie-Gauvin, K., Aarestrup, K., Riis, T. M. O., Jepsen, N. & Koed, A. Shining a light on the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of barriers, and its implications for management. Aqua. Conserv. Mar. Freshw. Ecosyst. 27, 1345–1349 (2017).

    Google Scholar 

  • 17.

    Magilligan, F. J., Nislow, K. H. & Renshaw, C. E. in Treatise on Geomorphology (ed. Shroder, J. F.) 794–808 (Academic Press, 2013).

  • 18.

    Petts, G. E. & Gurnell, A. M. Dams and geomorphology: research progress and future directions. Geomorphology 71, 27–47 (2005).

    ADS  Google Scholar 

  • 19.

    Bizzi, S. et al. On the control of riverbed incision induced by run-of-river power plant. Wat. Resour. Res. 51, 5023–5040 (2015).

    ADS  Google Scholar 

  • 20.

    Jones, P. E., Consuegra, S., Börger, L., Jones, J. & Garcia de Leaniz, C. Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: a critical review. Freshw. Biol. 65, 1165–1180 (2020).

    Google Scholar 

  • 21.

    Carpenter-Bundhoo, L. et al. Effects of a low-head weir on multi-scaled movement and behavior of three riverine fish species. Sci. Rep. 10, 6817 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Graf, W. L. Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Wat. Resour. Res. 35, 1305–1311 (1999).

    ADS  Google Scholar 

  • 23.

    Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Grizzetti, B. et al. Human pressures and ecological status of European rivers. Sci. Rep. 7, 205 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Mauch, C. & Zeller, T. (eds) Rivers in History: Perspectives on Waterways in Europe and North America (Univ. of Pittsburgh Press, 2008).

  • 26.

    Petts, G. E., Möller, H. & Roux, A. L. Historical Change of Large Alluvial Rivers: Western Europe 355 (John Wiley and Sons, 1989).

  • 27.

    Kemp, P. S. in Freshwater Fisheries Ecology (ed. Craig, J. F.) 717–769 (Wiley, 2015).

  • 28.

    European Environment Agency in European Waters—Assessment of Status and Pressures 85 (EEA, 2018).

  • 29.

    Garcia de Leaniz, C. et al. in From Sea to Source v2. Protection and Restoration of Fish Migration in Rivers Worldwide (eds Brink, K. et al.) 142–145 (World Fish Migration Foundation, 2018).

  • 30.

    Pistocchi, A. et al. Assessment of the Effectiveness of Reported Water Framework Directive Programmes of Measures. Part II—Development of a System of Europe-wide Pressure Indicators. Report No. EUR 28412 EN (Joint Research Centre, 2017).

  • 31.

    Garcia de Leaniz, C. Weir removal in salmonid streams: implications, challenges and practicalities. Hydrobiologia 609, 83–96 (2008).

    Google Scholar 

  • 32.

    Downward, S. & Skinner, K. Working rivers: the geomorphological legacy of English freshwater mills. Area 37, 138–147 (2005).

    Google Scholar 

  • 33.

    Sun, J., Galib, S. M. & Lucas, M. C. Are national barrier inventories fit for stream connectivity restoration needs? A test of two catchments. Wat. Environ. J. https://doi.org/10.1111/wej.12578 (2020).

  • 34.

    Atkinson, S. et al. An inspection-based assessment of obstacles to salmon, trout, eel and lamprey migration and river channel connectivity in Ireland. Sci. Total Environ. 719, 137215 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    European Environment Agency European Catchments and Rivers Network System (ECRINS) (EEA, 2012).

  • 36.

    Kristensen, P. & Globevnik, L. European small water bodies. Biol. Environ. 114B, 281–287 (2014).

    Google Scholar 

  • 37.

    Ferreira, T., Globevnik, L. & Schinegger, R. in Multiple Stressors in River Ecosystems 139–155 (Elsevier, 2019).

  • 38.

    Schwarz, U. Hydropower Pressure on European Rivers 36 (WWF, 2019).

  • 39.

    Schiemer, F. et al. The Vjosa River corridor: a model of natural hydro-morphodynamics and a hotspot of highly threatened ecosystems of European significance. Land. Ecol. 35, 953–968 (2020).

    Google Scholar 

  • 40.

    Duflo, E. & Pande, R. Dams. Q. J. Econ. 122, 601–646 (2007).

    Google Scholar 

  • 41.

    Grill, G., Ouellet Dallaire, C., Fluet Chouinard, E., Sindorf, N. & Lehner, B. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecol. Indic. 45, 148–159 (2014).

    Google Scholar 

  • 42.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  • 43.

    Tilt, B., Braun, Y. & He, D. Social impacts of large dam projects: a comparison of international case studies and implications for best practice. J. Environ. Manage. 90, S249–S257 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nature Sust. 1, 96–104 (2018).

    Google Scholar 

  • 45.

    Weibel, D. & Peter, A. Effectiveness of different types of block ramps for fish upstream movement. Aquat. Sci. 75, 251–260 (2013).

    Google Scholar 

  • 46.

    Cote, D., Kehler, D. G., Bourne, C. & Wiersma, Y. F. A new measure of longitudinal connectivity for stream networks. Landsc. Ecol. 24, 101–113 (2009).

    Google Scholar 

  • 47.

    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Bódis, K., Monforti, F. & Szabó, S. Could Europe have more mini hydro sites? A suitability analysis based on continentally harmonized geographical and hydrological data. Renew. Sust. Energy Rev. 37, 794–808 (2014).

    Google Scholar 

  • 49.

    Huđek, H., Žganec, K. & Pusch, M. T. A review of hydropower dams in Southeast Europe—distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea. Renew. Sust. Energy Rev. 117, 109434 (2020).

    Google Scholar 

  • 50.

    European Union Bringing Nature Back Into Our Lives. EU 2030 Biodiversity Strategy. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (European Commission, 2020).

  • 51.

    Wohl, E. Connectivity in rivers. Progr. Phys. Geog. Earth. Env. 41, 345–362 (2017).

    Google Scholar 

  • 52.

    Belletti, B. et al. Datasets for the AMBER Barrier Atlas of Europe. Table S1. Details of test rivers showing number of barriers present in current inventories (Atlas) and those encountered in the field. Table S3. Barrier Database sources. figshare https://doi.org/10.6084/m9.figshare.12629051 (2020).

  • 53.

    Jones, J. et al. Quantifying river fragmentation from local to continental scales: data management and modelling methods. Preprint at https://doi.org/10.22541/au.159612917.72148332 (2020).

  • 54.

    QGIS Geographic Information System https://qgis.org/en/site/ (Open Source Geospatial Foundation Project, 2010).

  • 55.

    Chao, A., Wang, Y. T. & Jost, L. Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods Ecol. Evol. 4, 1091–1100 (2013).

    Google Scholar 

  • 56.

    Strahler, A. N. Quantitative analysis of watershed geomorphology. Trans. AGU 38, 913–920 (1957).

    Google Scholar 

  • 57.

    R: A Language And Environment For Statistical Computing Version 4.0.0 (2020-04-24) https://www.r-project.org/ (R Foundation for Statistical Computing, 2020).

  • 58.

    Signorell, A. et al. DescTools: tools for descriptive statistics. R package version 0.99.37 https://andrisignorell.github.io/DescTools/ (2020).

  • 59.

    Januchowski-Hartley, S. R. et al. Restoring aquatic ecosystem connectivity requires expanding inventories of both dams and road crossings. Front. Ecol. Environ. 11, 211–217 (2013).

    Google Scholar 

  • 60.

    Schmutz, S. & Moog, O. in Riverine Ecosystem Management 111–127 (Springer, 2018).

  • 61.

    European Environment Agency CORINE Land Cover (CLC) Version 20 https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (2012).

  • 62.

    European Commission Global Human Settlement—GHS Population Grid https://ghsl.jrc.ec.europa.eu/ghs_pop.php (2015).

  • 63.

    European Environment Agency EU-DEM v1.1, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (Copernicus Land Monitoring Service, 2016).

  • 64.

    Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    ADS  Google Scholar 

  • 65.

    Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. in Advances in Neural Information Processing Systems (eds Burges, C. J. C. et al.) 431–439 (Neural Information Processing Systems Foundation, 2013).

  • 66.

    National Inventory of Dams http://nid.usace.army.mil/ (2018).

  • 67.

    Yoshimura, C., Omura, T., Furumai, H. & Tockner, K. Present state of rivers and streams in Japan. River Res. Appl. 21, 93–112 (2005).

    Google Scholar 

  • 68.

    Brazil Dams Safety Report http://www.snisb.gov.br/portal/snisb/relatorio-anual-de-seguranca-de-barragem/2019/rsb19-v0.pdf (National Water Agency (ANA), Brazil, 2020).

  • 69.

    World Commission on Dams Dams and Development: A New Framework for Decision Making https://pubs.iied.org/pdfs/9126IIED.pdf (Earthscan Publications, 2000).

  • 70.

    International Rivers. The True Cost of Hydropower in China. https://www.internationalrivers.org/wp-content/uploads/sites/86/2020/06/truecostofhydro_en_small.pdf (2014).

  • 71.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Trans. AGU 89, 93–94 (2008).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents