in

Neonicotinoids and decline in bird biodiversity in the United States

[adace-ad id="91168"]
  • 1.

    Brennan, L. A. & Kuvlesky, W. P. North American grassland birds: an unfolding conservation crisis? J. Wildl. Manage. 69, 1–13 (2005).

    Google Scholar 

  • 2.

    Rice, J. et al. (eds) Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2018).

  • 3.

    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    CAS  Google Scholar 

  • 4.

    Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & Ziolkowski, D. J. The North American breeding bird survey 1966–2011: summary analysis and species accounts. N. Am. Fauna 79, 1–32 (2013).

    Google Scholar 

  • 5.

    DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R. & Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 14, e0220029 (2019).

    CAS  Google Scholar 

  • 6.

    Riffell, S., Scognamillo, D. & Burger, L. W. Effects of the conservation reserve program on northern bobwhite and grassland birds. Environ. Monit. Assess. 146, 309–323 (2008).

    Google Scholar 

  • 7.

    Ay, J. S., Chakir, R., Doyen, L., Jiguet, F. & Leadley, P. Integrated models, scenarios and dynamics of climate, land use and common birds. Clim. Change 126, 13–30 (2014).

    CAS  Google Scholar 

  • 8.

    Forister, M. L. et al. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol. Lett. 12, 20160475 (2016).

    Google Scholar 

  • 9.

    Hurley, T. & Mitchell, P. Value of neonicotinoid seed treatments to US soybean farmers. Pest Manage. Sci. 73, 102–112 (2017).

    CAS  Google Scholar 

  • 10.

    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).

    CAS  Google Scholar 

  • 11.

    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).

    Google Scholar 

  • 12.

    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).

    CAS  Google Scholar 

  • 13.

    Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).

    CAS  Google Scholar 

  • 14.

    Gilburn, A. S. et al. Are neonicotinoid insecticides driving declines of widespread butterflies? PeerJ 3, e1402 (2015).

    Google Scholar 

  • 15.

    Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ. Int. 74, 291–303 (2015).

    CAS  Google Scholar 

  • 16.

    Van Dijk, T. C., Van Staalduinen, M. A. & Van der Sluijs, J. P. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE 8, e62374 (2013).

    Google Scholar 

  • 17.

    Mineau, P. & Palmer, C. The Impact of the Nation’s Most Widely Used Insecticides on Birds (American Bird Conservancy, 2013).

  • 18.

    Cimino, A. M., Boyles, A. L., Thayer, K. A. & Perry, M. J. Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environ. Health Perspect. 125, 155–162 (2016).

    Google Scholar 

  • 19.

    Hallmann, C. A., Foppen, R. P. B., Van Turnhout, C. A. M., De Kroon, H. & Jongejans, E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511, 341–343 (2014).

    CAS  Google Scholar 

  • 20.

    EFED Section 3 Registration for a Clothianidin and Beta-Cyfluthrin Combination Product for Use on Sugar Beets as a Seed Treatment (USEPA, 2007); https://go.nature.com/32DaXPU

  • 21.

    Eng, M. L., Stutchbury, B. J. M. & Morrissey, C. A. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci. Rep. 7, 15176 (2017).

    Google Scholar 

  • 22.

    Eng, M. L., Stutchbury, B. J. M. & Morrissey, C. A. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365, 1177–1180 (2019).

    CAS  Google Scholar 

  • 23.

    Pandey, S. P. & Mohanty, B. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary–thyroid axis of a wildlife bird. Chemosphere 122, 227–234 (2015).

    CAS  Google Scholar 

  • 24.

    Hill, A. B. The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965).

    CAS  Google Scholar 

  • 25.

    Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the upper Midwest. Proc. Natl Acad. Sci. USA 107, 18533–18538 (2010).

    CAS  Google Scholar 

  • 26.

    Evans, S. G. & Potts, M. D. Effect of agricultural commodity prices on species abundance of US grassland birds. Environ. Resour. Econ. 62, 549–565 (2015).

    Google Scholar 

  • 27.

    Illán, J. G. et al. Precipitation and winter temperature predict long-term range-scale abundance changes in western North American birds. Glob. Change Biol. 20, 3351–3364 (2014).

    Google Scholar 

  • 28.

    Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).

    Google Scholar 

  • 29.

    National Water-Quality Assessment Project—Pesticide National Synthesis Project (USGS, 2018); https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/

  • 30.

    Conley, T. G. GMM estimation with cross-sectional dependence. J. Econ. 92, 1–45 (1999).

    Google Scholar 

  • 31.

    Baker, N. T. & Wesley, W. S. Estimated Annual Agricultural Pesticide Use for Counties of the Conterminous United States, 2008–12 (US Department of the Interior, USGS, 2014).

  • 32.

    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).

    Google Scholar 

  • 33.

    Arellano, M. & Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991).

    Google Scholar 

  • 34.

    Cresswell, J. E. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20, 149–157 (2011).

    CAS  Google Scholar 

  • 35.

    Heller, M. Bill aims to ban pesticides harmful to bees. E&E News (21 February 2019); https://www.eenews.net/eenewspm/2019/02/21/stories/1060121799

  • 36.

    Zeng, G., Chen, M. & Zeng, Z. Risks of neonicotinoid pesticides. Science 340, 1403 (2013).

    CAS  Google Scholar 

  • 37.

    Grassland Birds (USDA-NRCS, Wildlife Habitat Council, 1999); ftp://ftp-fc.sc.egov.usda.gov/WHMI/WEB/pdf/GRASS1.pdf

  • 38.

    Hladik, M. L. & Kolpin, D. W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 13, 12–20 (2016).

    CAS  Google Scholar 

  • 39.

    Loss, S. R., Will, T. & Marra, P. P. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 46, 99–120 (2015).

    Google Scholar 

  • 40.

    Böcker, T. G. & Finger, R. A meta-analysis on the elasticity of demand for pesticides. J. Agric. Econ. 68, 518–533 (2017).

    Google Scholar 

  • 41.

    Fernandez-Cornejo, J. & Jans, S. Pest Management in US Agriculture Report No. 717 (USDA ERS, 1999).

  • 42.

    Commodity Costs and Returns (USDA ERS, 2018); https://www.ers.usda.gov/data-products/commodity-costs-and-returns/

  • 43.

    Li, Y., Miao, R. & Khanna, M. Effects of ethanol plant proximity and crop prices on land-use change in the United States. Am. J. Agric. Econ. 101, 467–491 (2019).

    Google Scholar 

  • 44.

    Wang, T. et al. Determinants of motives for land use decisions at the margins of the Corn Belt. Ecol. Econ. 134, 227–237 (2017).

    Google Scholar 

  • 45.

    Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).

    Google Scholar 

  • 46.

    Atkinson, P. W., Buckingham, D. & Morris, A. J. What factors determine where invertebrate-feeding birds forage in dry agricultural grasslands? Ibis 146, 99–107 (2004).

    Google Scholar 

  • 47.

    Kovács-Hostyánszki, A., Batáry, P., Peach, W. J. & Báldi, A. Effects of fertilizer application on summer usage of cereal fields by farmland birds in central Hungary. Bird Study 58, 330–337 (2011).

    Google Scholar 

  • 48.

    Stock, J. H. & Yogo, M. in Identification and Inference for Econometric Models: Essays in Honor of Thomas J. Rothenberg (eds Stock, J. H. & Andrews, D. W. K.) 80–108 (Cambridge Univ. Press, 2005).

  • 49.

    Windmeijer, F. Moment conditions for fixed effects count data models with endogenous regressors. Econ. Lett. 68, 21–24 (2000).

    Google Scholar 

  • 50.

    Allison, P. D. & Waterman, R. P. Fixed-effects negative binomial regression models. Sociol. Methodol. 32, 247–265 (2002).

    Google Scholar 

  • 51.

    Guimarães, P. The fixed effects negative binomial model revisited. Econ. Lett. 99, 63–66 (2008).

    Google Scholar 

  • 52.

    North American Breeding Bird Survey Dataset 1966–2018 (USGS Patuxent Wildlife Research Center, 2018); https://doi.org/10.5066/P9HE8XYJ

  • 53.

    Peterjohn, B. G. & Sauer, J. R. North American breeding bird survey annual summary 1990–1991. Bird Popul. 1, 52–67 (1993).

    Google Scholar 

  • 54.

    Smith, A. C., Anne, M., Hudson, R., Downes, C. M. & Francis, C. M. Change points in the population trends of aerial–insectivorous birds in North America: synchronized in time across species and regions. PLoS ONE 10, e013076 (2015).

    Google Scholar 

  • 55.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Google Scholar 

  • 56.

    Fishel, F. Pesticide Toxicity Profile: Neonicotinoid Pesticides (Univ. of Florida, IFAS, 2016); https://edis.ifas.ufl.edu/pi117

  • 57.

    Cropland Data Layer (USDA-NASS, 2020); http://nassgeodata.gmu.edu/CropScape/

  • 58.

    Parameter-Elevation Regression on Independent Slopes Model (PRISM) Climate Group (Oregon State Univ., 2018); http://prism.oregonstate.edu

  • 59.

    Population and Housing Unit Estimates Datasets (US Census Bureau, 2018); https://www.census.gov/programs-surveys/popest/data.html

  • 60.

    Fertilizer Use and Price (USDA ERS, 2018); https://www.ers.usda.gov/data-products/fertilizer-use-and-price/


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming