in

Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum

[adace-ad id="91168"]
  • 1.

    Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415416 (2014).

  • 2.

    Saikawa, E. et al. Global and regional emissions estimates for N2O. Atmos. Chem. Phys. 14, 4617–4641 (2014).

  • 3.

    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).

  • 4.

    Dalal, R. C. & Allen, D. E. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 56, 369 (2008).

  • 5.

    Covey, K. R., University, Y. & Megonigal, J. P. Methane production and emissions in trees and forests. New Phytol. https://doi.org/10.1111/nph.15624 (2018).

  • 6.

    Barba, J. et al. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytol. https://doi.org/10.1111/nph.15582 (2018).

  • 7.

    Megonigal, J. P. & Guenther, A. B. Methane emissions from upland forest soils and vegetation. Tree Physiol. 28, 491–498 (2008).

  • 8.

    Gauci, V., Gowing, D. J. G., Hornibrook, E. R. C., Davis, J. M. & Dise, N. B. Woody stem methane emission in mature wetland alder trees. Atmos. Environ. 44, 2157–2160 (2010).

  • 9.

    Pangala, S. R., Moore, S., Hornibrook, E. R. C. & Gauci, V. Trees are major conduits for methane egress from tropical forested wetlands. New Phytol. 197, 524–531 (2013).

  • 10.

    Smith, Ka. A. et al. Exchange of greenhousegases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 54, 779–791 (2003).

    • Article
    • Google Scholar
  • 11.

    Rusch, H. & Rennenberg, H. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201, 1–7 (1998).

  • 12.

    Machacova, K., Papen, H., Kreuzwieser, J. & Rennenberg, H. Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant and Soil vol. 364 (2013).

  • 13.

    Pangala, S. R., Hornibrook, E. R. C., Gowing, D. J. & Gauci, V. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Glob. Chang. Biol. 21, 2642–2654 (2015).

  • 14.

    Terazawa, K., Ishizuka, S., Sakata, T., Yamada, K. & Takahashi, M. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol. Biochem. 39, 2689–2692 (2007).

  • 15.

    Aosaar, J., Varik, M. & Uri, V. Biomass production potential of grey alder (Alnus incana (L.) Moench.) in Scandinavia and Eastern Europe: A review. Biomass and Bioenergy 45, 11–26 (2012).

    • Article
    • Google Scholar
  • 16.

    Uri, V., Lõhmus, K., Kiviste, A. & Aosaar, J. The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry 82, 61–74 (2009).

    • Article
    • Google Scholar
  • 17.

    Uri, V., Tullus, H. & Lo, K. Uri (2001) Biomass production and nutrien accumulation in short-rotation grey alder.pdf. 161, 169–179 (2002).

  • 18.

    Rytter, L. & Rytter, R. M. Growth and carbon capture of grey alder (Alnus incana (L.) Moench.) under north European conditions – Estimates based on reported research. For. Ecol. Manage. 373, 56–65 (2016).

    • Article
    • Google Scholar
  • 19.

    Evans, J. Silviculture of Broadleaved Woodland. J. Appl. Ecol. 22, 610 (2006).

    • Google Scholar
  • 20.

    Vogel, C. S., Curtis, P. S. & Thomas, R. B. Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecol. 130, 63–70 (1997).

    • Article
    • Google Scholar
  • 21.

    Krzaklewski, W., Pietrzykowski, M. & WoŚ, B. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecol. Eng. 49, 35–40 (2012).

    • Article
    • Google Scholar
  • 22.

    Rosenvald, K. et al. Rhizosphere effect and fine-root morphological adaptations in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas. Ecol. Eng. 37, 1027–1034 (2011).

    • Article
    • Google Scholar
  • 23.

    Šourková, M., Frouz, J. & Šantrůčková, H. Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 124, 203–214 (2005).

  • 24.

    Roy, S., Khasa, D. P. & Greer, C. W. Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can. J. Bot. 85, 237–251 (2007).

  • 25.

    Huth, V. et al. The climate warming effect of a fen peat meadow with fluctuating water table is reduced by young alder trees. 21, 1–18 (2018).

  • 26.

    Biology, Controls and Models of Tree Volatile Organic Compound Emissions. vol. 5 (Springer Netherlands, (2013).

  • 27.

    Maier, M., Machacova, K., Lang, F., Svobodova, K. & Urban, O. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests. J. Plant Nutr. Soil Sci. 181, 31–35 (2018).

  • 28.

    Machacova, K., Maier, M., Svobodova, K., Lang, F. & Urban, O. Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees. Sci. Rep. 7, 1–7 (2017).

  • 29.

    Niinemets, Ü. et al. Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors? Reg. Environ. Chang. 17, 2079–2096 (2017).

    • Article
    • Google Scholar
  • 30.

    Unger, I. M., Kennedy, A. C. & Muzika, R.-M. Flooding effects on soil microbial communities. Appl. Soil Ecol. 42, 1–8 (2009).

    • Article
    • Google Scholar
  • 31.

    Unger, I. M., Motavalli, P. P. & Muzika, R.-M. Changes in soil chemical properties with flooding: A field laboratory approach. Agric. Ecosyst. Environ. 131, 105–110 (2009).

  • 32.

    Lohila, A. et al. Responses of N2O fluxes to temperature, water table and N deposition in a northern boreal fen. Eur. J. Soil Sci. 61, 651–661 (2010).

  • 33.

    Maljanen, M. et al. The emissions of nitrous oxide and methane from natural soil temperature gradients in a volcanic area in southwest Iceland. Soil Biol. Biochem. 109, 70–80 (2017).

  • 34.

    Mer, J. L., Roger, P., Provence, D. & Luminy, D. of methane by soils: A review. Archaea 37, 25–50 (2001).

    • Google Scholar
  • 35.

    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 368 (2013).

  • 36.

    Pärn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1–8 (2018).

  • 37.

    Klemedtsson, L., Svensson, B. H. & Rosswall, T. Relationships between soil moisture content and nitrous oxide production during nitrification and denitrification. Biol. Fertil. Soils 6, 106–111 (1988).

    • Google Scholar
  • 38.

    Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).

  • 39.

    Klemedtsson, L., Svensson, B. H. & Rosswall, T. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol. Fertil. Soils 6, 112–119 (1988).

    • Google Scholar
  • 40.

    Davidson, E. A. & Swank, W. T. Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Appl. Environ. Microbiol. 52, 1287–1292 (1986).

  • 41.

    Keppler, F., Hamilton, J. T. G., Braß, M. & Röckmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006).

  • 42.

    Terazawa, K., Yamada, K., Ohno, Y., Sakata, T. & Ishizuka, S. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest. Biogeochemistry 123, 349–362 (2015).

  • 43.

    Mander, Ü. et al. The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands. Environ. Sci. Pollut. Res. 22, 2360–2371 (2015).

  • 44.

    Rice, A. L. et al. Emissions of anaerobically produced methane by trees. Geophys. Res. Lett. 37, n/a–n/a (2010).

  • 45.

    Pitz, S. L., Megonigal, J. P., Chang, C. H. & Szlavecz, K. Methane fluxes from tree stems and soils along a habitat gradient. Biogeochemistry 137, 307–320 (2018).

  • 46.

    Machacova, K. et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Sci. Rep. 6, 1–8 (2016).

  • 47.

    Machacova, K., Vainio, E., Urban, O. & Pihlatie, M. Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees. Nat. Commun. 10, 1–13 (2019).

  • 48.

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    • Article
    • Google Scholar
  • 49.

    Nicholls, R. J., Hoozemans, F. M. J. & Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 9 (1999).

  • 50.

    Semmler, T. & Jacob, D. Modeling extreme precipitation events – A climate change simulation for. Europe. Glob. Planet. Change 44, 119–127 (2004).

  • 51.

    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

  • 52.

    Vargas, R. & Barba. J. Greenhouse Gas Fluxes From Tree Stems. Trends Plant Sci. 24, 296–299 (2019).

    • CAS
    • Google Scholar
  • 53.

    Kupper, P. et al. An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ. Exp. Bot. 72, 432–438 (2011).

    • Article
    • Google Scholar
  • 54.

    Soosaar, K. et al. Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests. Ecol. Eng. 37, 40–53 (2011).

    • Article
    • Google Scholar
  • 55.

    Livingston, G. P. & Hutchinson, G. L. Enclosure-based measurement of trace gas exchange: Applications and sources of error. in Biogenic Trace Gases: Measuring Emissions from Soil and Water (eds. Matson, P. A. & R.C., H.) 14–51 (Ed. Blackwell Publishing: Oxford, Unitel Kingdom (1995).

  • 56.

    Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E. & Dell, C. J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. https://doi.org/10.3791/52110 (2014).

  • 57.

    Sjögersten, S. et al. Methane emissions from tree stems in neotropical peatlands. New Phytologist, https://doi.org/10.1111/nph.16178 (2019).

  • 58.

    Apha, Water Environment Federation & American Water Works Association. Standard Methods for the Examination of Water and Wastewater (Part 1000–3000). Stand. Methods Exam. Water Wastewater 733, doi: ISBN 9780875532356 (1999).

  • 59.

    Dray, S., Dufour, A. Ade4: Analysis of Ecological Data. Explor. Euclidean Methods Environ. Sci. 22 (2007).

  • 60.

    Tierney, N. et al. Package ‘ naniar’ R topics documented: (2019).

  • 61.

    Kowarik, A. & Templ, M. Imputation with the R package VIM. J. Stat. Softw. 74 (2016).

  • 62.

    Josse, J. & Husson, F. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 70 (2016).

  • 63.

    Oksanen, J. et al. Package ‘ vegan’. 0–291 (2019).

  • 64.

    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. Mvabund- an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    • Article
    • Google Scholar
  • 65.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67 (2015).

  • 66.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82 (2017).

  • 67.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).

  • 68.

    Quian, S. S. Environmental and Ecological Statistics with R. (ISBN9781315370262). https://doi.org/10.1201/9781315370262 2016.


  • Source: Ecology - nature.com

    Competition experiments in a soil microcosm reveal the impact of genetic and biotic factors on natural yeast populations

    MIT continues to advance toward greenhouse gas reduction goals