in

Spatial patterns of microbial communities across surface waters of the Great Barrier Reef

[adace-ad id="91168"]
  • 1.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    CAS  PubMed  Google Scholar 

  • 2.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  PubMed  Google Scholar 

  • 3.

    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).

    PubMed  Google Scholar 

  • 4.

    Brodie, J., De’ath, G., Devlin, M., Furnas, M. & Wright, M. Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Mar. Freshw. Res. 58, 342–353 (2007).

    CAS  Google Scholar 

  • 5.

    Schaffelke, B., Carleton, J., Skuza, M., Zagorskis, I. & Furnas, M. J. Water quality in the inshore Great Barrier Reef lagoon: implications for long-term monitoring and management. Mar. Pollut. Bull. 65, 249–260 (2012).

    CAS  PubMed  Google Scholar 

  • 6.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  PubMed  Google Scholar 

  • 7.

    Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature https://doi.org/10.1038/s41586-019-1081-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    ARC Centre of Excellence for Coral Reef Studies. (ed Hugues, T. P.) (2020).

  • 9.

    Bourne, D. & Webster, N. in Coral Reef Microbial Communities (ed Rosenberg, E.) (Springer, 2013).

  • 10.

    Gast, G. J., Wiegman, S., Wieringa, E., Duyl, F. C. & Bak, R. P. M. Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar. Ecol. Prog. Ser. 167, 37–45 (1998).

    Google Scholar 

  • 11.

    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).

    CAS  PubMed  Google Scholar 

  • 12.

    Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the northern line islands. PLoS ONE https://doi.org/10.1371/journal.pone.0001584 (2008).

  • 13.

    Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).

    CAS  PubMed  Google Scholar 

  • 14.

    Ainsworth, T. D. & Gates, R. D. Corals’ microbial sentinels. Science 352, 1518–1519 (2016).

    CAS  PubMed  Google Scholar 

  • 15.

    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).

    Article  PubMed  Google Scholar 

  • 16.

    Beatty, D. S. et al. Variable effects of local management on coral defenses against a thermally regulated bleaching pathogen. Sci. Adv. 5, eaay1048 (2019).

  • 17.

    Pearman, J. K. et al. Microbial planktonic communities in the Red Sea: high levels of spatial and temporal variability shaped by nutrient availability and turbulence. Sci. Rep. https://doi.org/10.1038/s41598-017-06928-z (2017).

  • 18.

    Weber, L. et al. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14870 (2019).

  • 19.

    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).

    Google Scholar 

  • 20.

    Bruce, T. et al. Abrolhos bank Reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE 10.1371/journal.pone.0036687 (2012).

  • 21.

    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. https://doi.org/10.1038/ncomms11833 (2016).

  • 22.

    Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).

    Google Scholar 

  • 23.

    Kelly, L. W. et al. Black reefs: iron-induced phase shifts on coral reefs. ISME J. 6, 638–649 (2012).

    CAS  PubMed  Google Scholar 

  • 24.

    Haas, A. F. et al. Effects of coral Reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE https://doi.org/10.1371/journal.pone.0027973 (2011).

  • 25.

    Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).

    CAS  PubMed  Google Scholar 

  • 26.

    Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. https://doi.org/10.1038/NMICROBIOL.2016.42 (2016).

  • 27.

    McDole, T. et al. Assessing coral reefs on a pacific-wide scale using the microbialization score. PLoS ONE https://doi.org/10.1371/journal.pone.0043233 (2012).

  • 28.

    Mumby, P. J. & Steneck, R. S. Paradigm lost: dynamic nutrients and missing detritus on coral reefs. Bioscience 68, 487–495 (2018).

    Google Scholar 

  • 29.

    Kelly, L. W. et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1403319111 (2014).

  • 30.

    Angly, F. E. et al. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ 4, e1511 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Alongi, D. M. et al. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf. J. Mar. Syst. 142, 25–39 (2015).

    Google Scholar 

  • 32.

    Glasl, B. et al. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 7, 94 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    CAS  PubMed  Google Scholar 

  • 34.

    MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627 (2019).

    PubMed  Google Scholar 

  • 35.

    Mellin, C. et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Change Biol. 25, 2431–2445 (2019).

    Google Scholar 

  • 36.

    Glasl, B., Bourne, D. G., Frade, P. R. & Webster, N. S. Establishing microbial baselines to identify indicators of coral reef health. Microbiol. Aust. https://doi.org/10.1071/MA18011 (2018).

    Article  Google Scholar 

  • 37.

    van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).

    Google Scholar 

  • 38.

    Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report 2019. (Townsville, 2019).

  • 39.

    Emslie, M. Long-term Reef Monitoring Program – Annual Summary Report on coral reef condition for 2019 (Townsville, 2019).

  • 40.

    Epstein, H. E., Torda, G., Munday, P. L. & van Oppen, M. J. H. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13, 1635–1638 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Brown, M. V. et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Nat. Sci. Data https://doi.org/10.1038/sdata.2018.130 (2018).

  • 42.

    Wang, Z. et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14734 (2019).

  • 43.

    Mo, Y. Y. et al. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 12, 2198–2210 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Nelson, C. E., Alldredge, A. L., McCliment, E. A., Amaral-Zettler, L. A. & Carlson, C. A. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J. 5, 1374–1387 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Devlin, M. J. & Brodie, J. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar. Pollut. Bull. 51, 9–22 (2005).

    CAS  PubMed  Google Scholar 

  • 46.

    Alongi, D. M. & McKinnon, A. D. The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf. Mar. Pollut. Bull. 51, 239–252 (2005).

    CAS  PubMed  Google Scholar 

  • 47.

    Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity and Change (Cambridge University Press, 2007).

  • 48.

    Yeo, S. K., Huggett, M. J., Eiler, A. & Rappe, M. S. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS ONE 8, e56207 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Furnas, M., Mitchell, A., Skuza, M. & Brodie, J. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51, 253–265 (2005).

    CAS  PubMed  Google Scholar 

  • 50.

    Brodie, J. E., Devlin, M., Haynes, D. & Waterhouse, J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106, 281–302 (2010).

    Google Scholar 

  • 51.

    Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

    CAS  PubMed  Google Scholar 

  • 52.

    Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Scanlan, D. J. & West, N. J. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol. 40, 1–12 (2002).

    CAS  PubMed  Google Scholar 

  • 54.

    Jang, Y. et al. Genome sequence of strain IMCC3088, a Proteorhodopsin-containing marine bacterium belonging to the OM60/NOR5 clade. J. Bacteriol. 193, 3415–3416 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Yan, S. et al. Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria. Syst. Appl. Microbiol. 32, 124–139 (2009).

    CAS  PubMed  Google Scholar 

  • 56.

    Roder, C., Arif, C., Daniels, C., Weil, E. & Voolstra, C. R. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol. Ecol. 23, 965–974 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Lofmark, S., Jernberg, C., Jansson, J. K. & Edlund, C. Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J. Antimicrob. Chemother. 58, 1160–1167 (2006).

    PubMed  Google Scholar 

  • 58.

    Glasl, B. et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME J. https://doi.org/10.1038/s41396-020-0622-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Baldini, J. I. et al. in The Prokaryotes (eds Rosenberg, E. et al.) 533–618 (Springer, 2014).

  • 60.

    Dupont, C. L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186–1199 (2012).

    CAS  PubMed  Google Scholar 

  • 61.

    Zubkov, M. V., Fuchs, B. M., Tarran, G. A., Burkill, P. H. & Amann, R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 69, 1299–1304 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).

    PubMed  Google Scholar 

  • 63.

    Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006).

    CAS  PubMed  Google Scholar 

  • 64.

    Chase, A. B. & Martiny, J. B. H. The importance of resolving biogeographic patterns of microbial microdiversity. Microbiol. Aust. 38, 2015–2205 (2018).

    Google Scholar 

  • 65.

    Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7, 962–979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Roach, T. N. F. et al. Microbial bioenergetics of coral-algal interactions. Peerj https://doi.org/10.7717/peerj.3423 (2017).

  • 67.

    McCliment, E. A. et al. An all-taxon microbial inventory of the Moorea coral reef ecosystem. ISME J. 6, 309–319 (2012).

    CAS  PubMed  Google Scholar 

  • 68.

    Steven, A. D. L. et al. eReefs: an operational information system for managing the Great Barrier Reef. J. Operational Oceanogr. 12, S12–S28 (2019).

  • 69.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).

  • 70.

    Sammut, C. & Webb, G. I. in Encyclopedia of Machine Learning (eds Claude Sammut & Geoffrey I. Webb) 600-601 (Springer US, 2010).

  • 71.

    Cohen, J. Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bull. 70, 213–220 (1968).

    CAS  Google Scholar 

  • 72.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  • 73.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • 74.

    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinforma. 12, 35 (2011).

    Google Scholar 

  • 75.

    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-6. (2018).

  • 76.

    Tang, Y., Horikoshi, M. & Li, W. ggfortify: unified interface to visualize statistical result of popular R packages. The R Journal 8 (2016).

  • 77.

    De Caceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).

    Google Scholar 

  • 78.

    De Caceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).

    PubMed  Google Scholar 

  • 79.

    Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10, 2280–2292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2015).

  • 81.

    McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).

  • 82.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).

  • 83.

    Matthews, S. A., Mellin, C. & Frade, P. R. An adapted R script to extract environmental data from eReefs, https://github.com/sammatthews990/eReefs_Fradeetal2019 (2019).


  • Source: Ecology - nature.com

    Pit lakes from Southern Sweden: natural radioactivity and elementary characterization

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens