in

Widespread endogenization of giant viruses shapes genomes of green algae

[adace-ad id="91168"]
  • 1.

    Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283–296 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Holmes, E. C. The evolution of endogenous viral elements. Cell Host Microbe 10, 368–377 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Wilhelm, S. W. et al. A student’s guide to giant viruses infecting small eukaryotes: from Acanthamoeba to zooxanthellae. Viruses 9, 46 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Abergel, C., Legendre, M. & Claverie, J.-M. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol. Rev. 39, 779–796 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Weynberg, K. D., Allen, M. J. & Wilson, W. H. Marine prasinoviruses and their tiny plankton hosts: a review. Viruses 9, 43 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Bhattacharya, D. & Medlin, A. L. Algal phylogeny and the origin of land plants. Plant Physiol. 116, 9–15 (1998).

    CAS  PubMed Central  Article  Google Scholar 

  • 8.

    Jeanniard, A. et al. Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses. BMC Genomics 14, 158 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Filée, J. Genomic comparison of closely related giant viruses supports an accordion-like model of evolution. Front. Microbiol. 6, 593 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Van Etten, J. L. et al. Chloroviruses have a sweet tooth. Viruses 9, 88 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Schvarcz, C. R. & Steward, G. F. A giant virus infecting green algae encodes key fermentation genes. Virology 518, 423–433 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Sun, C., Feschotte, C., Wu, Z. & Mueller, R. L. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol. 13, 38 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Marcet-Houben, M. & Gabaldón, T. Acquisition of prokaryotic genes by fungal genomes. Trends Genet. 26, 5–8 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Rossoni, A. W. et al. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 8, e45017 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Filée, J. Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: the visible part of the iceberg? Virology 466–467, 53–59 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 17.

    Maumus, F. & Blanc, G. Study of gene trafficking between Acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome Biol. Evol. 8, 3351–3363 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Gallot-Lavallée, L. & Blanc, G. A glimpse of nucleo-cytoplasmic large DNA virus biodiversity through the eukaryotic genomics window. Viruses 9, 17 (2017).

    PubMed Central  Article  Google Scholar 

  • 19.

    Maumus, F., Epert, A., Nogué, F. & Blanc, G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 5, 4268 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Guglielmini, J., Woo, A. C., Krupovic, M., Forterre, P. & Gaia, M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc. Natl Acad. Sci. USA 116, 19585–19592 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Forterre, P. & Gaïa, M. Giant viruses and the origin of modern eukaryotes. Curr. Opin. Microbiol. 31, 44–49 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Piacente, F., Gaglianone, M., Laugieri, M. E. & Tonetti, M. G. The autonomous glycosylation of large DNA viruses. Int. J. Mol. Sci. 16, 29315–29328 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Wilson, W. H. et al. Complete genome sequence and lytic phase transcription profile of a CoccolithovirusScience 309, 1090–1092 (2005).

    ADS  Article  CAS  Google Scholar 

  • 26.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016). 

    Article  CAS  Google Scholar 

  • 27.

    Koonin, E. V. & Krupovic, M. The depths of virus exaptation. Curr. Opin. Virol. 31, 1–8 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Groisman, E. A. & Ochman, H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87, 791–794 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Martin, W. F. Too much eukaryote LGT. BioEssays 39, 1700115 (2017).

    Article  Google Scholar 

  • 31.

    Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Cock, J. M. et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465, 617–621 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Delaroque, N., Maier, I., Knippers, R. & Müller, D. G. Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae). J. Gen. Virol. 80, 1367–1370 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Delaroque, N. & Boland, W. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses. BMC Evol. Biol. 8, 110 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Filée, J., Siguier, P. & Chandler, M. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23, 10–15 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 40.

    Filée, J., Pouget, N. & Chandler, M. Phylogenetic evidence for extensive lateral acquisition of cellular genes by nucleocytoplasmic large DNA viruses. BMC Evol. Biol. 8, 320 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Hoff, K. J. & Stanke, M. Predicting genes in single genomes with AUGUSTUS. Curr. Protoc. Bioinformatics 65, e57 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 45.

    Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: efficient manipulation of biological strings. R package version 2.56.0  https://bioconductor.org/packages/Biostrings (2020).

  • 49.

    Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Moniruzzaman, M. et al. Virus–host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat. Commun. 8, 16054 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Lechner, M. et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Csardi G, N. T. The igraph software package for complex network research. InterJournal Complex Systems 1695, 1–9 (2006).

  • 61.

    Burns, J. A., Paasch, A., Narechania, A. & Kim, E. Comparative genomics of a bacterivorous green algae reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biol. Ecol. 7, 3047–3061 (2015).

    CAS  Article  Google Scholar 

  • 62.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Martinez-Gutierrez, C. A. & Aylward, F. O. Strong purifying selection is associated with genome streamlining in epipelagic Marinimicrobia. Genome Biol. Evol. 11, 2887–2894 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Migrant birds and mammals live faster than residents

    Study identifies reasons for soaring nuclear plant cost overruns in the U.S.