in

A primer on emerging field-deployable synthetic biology tools for global water quality monitoring

  • 1.

    Gosling, S. N. & Arnell, N. W. A global assessment of the impact of climate change on water scarcity. Clim. Change 134, 371–385 (2016).

    • Article
    • Google Scholar
  • 2.

    Kummu, M. et al. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 6, 38495 (2016).

  • 3.

    United Nations. High-Level Panel on Water. Making Every Drop Count: An Agenda for Water Action. https://reliefweb.int/report/world/making-every-drop-count-agenda-water-action-high-level-panel-water-outcome-document-14 (2018).

  • 4.

    Watkins, K. Human Development Report 2006-beyond Scarcity: Power, Poverty and the Global Water Crisis. (UNDP Human Development Reports, 2006).

  • 5.

    Honkonen, T. Water security and climate change: the need for adaptive governance. Potchefstroom Electron. Law Journal/Potchefstroomse Elektron. Regsbl. 20. https://doi.org/10.17159/1727-3781/2016/v19i0a1651 (2017).

  • 6.

    World Economic Forum. The Global Risks Report 2019, 14th Edition. https://www.weforum.org/reports/the-global-risks-report-2019 (2019).

  • 7.

    USAID. U.S. Government Global Water Strategy. https://www.usaid.gov/what-we-do/water-and-sanitation/us-global-water-strategy (USAID, 2017).

  • 8.

    Wagstaff, A. The Millennium Development Goals for Health: Rising to the Challenges. http://documents.worldbank.org/curated/en/875031468329973611/The-millennium-development-goals-for-health-rising-to-the-challenges (2004).

  • 9.

    Sachs, J. D. From millennium development goals to sustainable development goals. Lancet 379, 2206–2211 (2012).

    • Article
    • Google Scholar
  • 10.

    World Health Organization & UNICEF. Water for Life: Making It Happen. https://www.who.int/water_sanitation_health/monitoring/jmp2005/en/ (2005).

  • 11.

    Bartram, J. et al. Global monitoring of water supply and sanitation: history, methods and future challenges. Int. J. Environ. Res. Public Health 11, 8137–8165 (2014).

    • Article
    • Google Scholar
  • 12.

    Damania, R., Desbureaux, S., Rodella, A.-S., Russ, J. & Zaveri, E. Quality Unknown: The Invisible Water Crisis. (World Bank Publications, 2019).

  • 13.

    Stauber, C. The sustainable development goals for water: the need to consider perception, preference, and safety. Am. J. Trop. Med. Hyg. 97, 985 (2017).

    • Article
    • Google Scholar
  • 14.

    UNICEF. SDG Global Indicators Related to Children. https://data.unicef.org/resources/sdg-global-indicators-related-to-children/ (2018).

  • 15.

    Ellis, K. et al. Understanding the costs of investigating coliform and E. coli detections during routine drinking water quality monitoring. Urban Water J. 15, 101–108 (2018).

  • 16.

    World Health Organization. Guidelines for Drinking-water Quality, 4th edn, Incorporating the 1st Addendum. (World Health Organization, 2018).

  • 17.

    Fawell, J., Bailey, K., Chilton, J., Dahi, E. & Magara, Y. Fluoride in Drinking-Water. (IWA Publishing, 2006).

  • 18.

    Chelsea Technologies. UviLux. Available at: https://chelsea.co.uk/products/uvilux/.

  • 19.

    IDEXX. Coliform/E.coli Water Tests. Available at: https://www.idexx.com/en/water/products/?cy=y_category_252&cx=x_category_259&ts=all.

  • 20.

    Hach USA. Arsenic Low Range Test Kit. Available at: https://www.hach.com/arsenic-low-range-test-kit/product?id=7640217303.

  • 21.

    Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367 (2010).

  • 22.

    Liu, X. et al. Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proc. Natl Acad. Sci. 116, 20398–20403 (2019).

  • 23.

    Lucks, J. B., Qi, L., Whitaker, W. R. & Arkin, A. P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    • Article
    • Google Scholar
  • 24.

    Salehi, A. S. M. et al. Cell-free protein synthesis approach to biosensing hTRβ-specific endocrine disruptors. Anal. Chem. 89, 3395–3401 (2017).

  • 25.

    Alam, K. K. et al. Rapid, low-cost detection of water contaminants using regulated in vitro transcription. Preprint at biorxiv.org/content/10.1101/619296v2 (2019).

  • 26.

    Willardson, B. M. et al. Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl. Environ. Microbiol. 64, 1006–1012 (1998).

  • 27.

    Tauriainen, S., Karp, M., Chang, W. & Virta, M. Luminescent bacterial sensor for cadmium and lead. Biosens. Bioelectron. 13, 931–938 (1998).

  • 28.

    Thavarajah, W. et al. Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synth. Biol. 9, 10–18 (2019).

  • 29.

    Selifonova, O., Burlage, R. & Barkay, T. Bioluminescent sensors for detection of bioavailable Hg (II) in the environment. Appl. Environ. Microbiol. 59, 3083–3090 (1993).

  • 30.

    Gräwe, A. et al. A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLoS ONE 14, e0210940 (2019).

  • 31.

    Pellinen, T., Huovinen, T. & Karp, M. A cell-free biosensor for the detection of transcriptional inducers using firefly luciferase as a reporter. Anal. Biochem. 330, 52–57 (2004).

  • 32.

    Rawson, D. M., Willmer, A. J. & Turner, A. P. P. Whole-cell biosensors for environmental monitoring. Biosensors 4, 299–311 (1989).

  • 33.

    Stocker, J. et al. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol. 37, 4743–4750 (2003).

  • 34.

    Prest, A. G., Winson, M. K., Hammond, J. R. M. & Stewart, G. The construction and application of a lux‐based nitrate biosensor. Lett. Appl. Microbiol. 24, 355–360 (1997).

  • 35.

    Virta, M., Lampinen, J. & Karp, M. A luminescence-based mercury biosensor. Anal. Chem. 67, 667–669 (1995).

  • 36.

    Wen, K. Y. et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synth. Biol. 6, 2293–2301 (2017).

  • 37.

    Takahashi, M. K. et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9, 3347 (2018).

  • 38.

    Phillips, E. A., Moehling, T. J., Bhadra, S., Ellington, A. D. & Linnes, J. C. Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal. Chem. 90, 6580–6586 (2018).

  • 39.

    Kawaguchi, T., Chen, Y. P., Norman, R. S. & Decho, A. W. Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl. Environ. Microbiol. 74, 3667–3671 (2008).

  • 40.

    Jiang, Y. S. et al. Portable platform for rapid in-field identification of human fecal pollution in water. Water Res. 131, 186–195 (2018).

  • 41.

    Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (80-.). 356, 438–442 (2017).

  • 42.

    Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940–954 (2014).

  • 43.

    Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

  • 44.

    Verosloff, M., Chappell, J., Perry, K. L., Thompson, J. R. & Lucks, J. B. PLANT-Dx: a molecular diagnostic for point-of-use detection of plant pathogens. ACS Synth. Biol. 8, 902–905 (2019).

  • 45.

    Ma, D., Shen, L., Wu, K., Diehnelt, C. W. & Green, A. A. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth. Biol. 3, ysy018 (2018).

  • 46.

    Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science (80-.). 360, 444–448 (2018).

  • 47.

    Spoelstra, W. K. et al. CRISPR-based DNA and RNA detection with liquid-liquid phase separation. Preprint at biorxiv.org/content/10.1101/471482v2 (2019).

  • 48.

    Romero, J. L. R., Carver, G. D., Johnson, P. A., Perry, K. L. & Thompson, J. R. A rapid, sensitive and inexpensive method for detection of grapevine red blotch virus without tissue extraction using loop-mediated isothermal amplification. Arch. Virol. 164, 1453–1457 (2019).

  • 49.

    Grieshaber, D., MacKenzie, R., Vörös, J. & Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 8, 1400–1458 (2008).

  • 50.

    Wang, J. et al. DNA electrochemical biosensors for environmental monitoring. A review. Anal. Chim. Acta 347, 1–8 (1997).

  • 51.

    Tyagi, A. et al. Synthetic biology: applications in the food sector. Crit. Rev. Food Sci. Nutr. 56, 1777–1789 (2016).

  • 52.

    Mortimer, J. C. Plant synthetic biology could drive a revolution in biofuels and medicine. Exp. Biol. Med. 244, 323–331 (2019).

  • 53.

    Slomovic, S., Pardee, K. & Collins, J. J. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl Acad. Sci. 112, 14429–14435 (2015).

  • 54.

    Rogers, J. K. et al. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res. 43, 7648–7660 (2015).

  • 55.

    Porto, T. V., Wilson, M. T. & Worrall, J. A. R. Copper and nickel bind via two distinct kinetic mechanisms to a CsoR metalloregulator. Dalt. Trans. 44, 20176–20185 (2015).

  • 56.

    Yuan, L., Kurek, I., English, J. & Keenan, R. Laboratory-directed protein evolution. Microbiol. Mol. Biol. Rev. 69, 373–392 (2005).

  • 57.

    Porter, E. B., Polaski, J. T., Morck, M. M. & Batey, R. T. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat. Chem. Biol. 13, 295 (2017).

  • 58.

    Naylor, L. H. Reporter gene technology: the future looks bright. Biochem. Pharmacol. 58, 749–757 (1999).

  • 59.

    Thorne, N., Inglese, J. & Auld, D. S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem. Biol. 17, 646–657 (2010).

  • 60.

    Wan, X., Ho, T. Y. H. & Wang, B. in Handbook of Cell Biosensors. 1–37 (2019).

  • 61.

    Belkin, S. et al. Remote detection of buried landmines using a bacterial sensor. Nat. Biotechnol. 35, 308 (2017).

  • 62.

    Stirling, F. et al. Rational design of evolutionarily stable microbial kill switches. Mol. Cell 68, 686–697 (2017).

  • 63.

    Silverman, A., Kelley-Loughnane, N., Lucks, J. B. & Jewett, M. C. Deconstructing cell-free extract preparation for in vitro activation of transcriptional genetic circuitry. ACS Synth. Biol. 8, 403–414 (2018).

  • 64.

    Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S. & Singh, V. P. Contamination of water resources by pathogenic bacteria. AMB Express 4, 51 (2014).

    • Article
    • Google Scholar
  • 65.

    Jamison, D. T. et al. Disease Control Priorities, (Volume 9): Improving Health and Reducing Poverty. (World Bank Publications, 2017).

  • 66.

    Pillai, J., Mathew, K., Gibbs, R. & Ho, G. E. H2S paper strip method—A bacteriological test for faecal coliforms in drinking water at various temperatures. Water Sci. Technol. 40, 85–90 (1999).

  • 67.

    Aquagenx. The Compartment Bag Test (CBT) Quantitative H2S Water Quality Test Kits. Available at: https://www.aquagenx.com/cbt-h2s/.

  • 68.

    Cowburn, J. K., Goodall, T., Fricker, E. J., Walter, K. S. & Fricker, C. R. A preliminary study of the use of Colilert for water quality monitoring. Lett. Appl. Microbiol. 19, 50–52 (1994).

    • Article
    • Google Scholar
  • 69.

    mWater. mWater Test Kits. Available at: https://www.mwater.co/kits.html.

  • 70.

    Pall Corporation. Membrane Filter Technique. Available at: https://laboratory.pall.com/en/microbiology-qc/laboratory-membrane-filter-technique.html.

  • 71.

    Sorensen, J. P. R. et al. In-situ tryptophan-like fluorescence: a real-time indicator of faecal contamination in drinking water supplies. Water Res. 81, 38–46 (2015).

  • 72.

    Zhao, Y., Chen, F., Li, Q., Wang, L. & Fan, C. Isothermal amplification of nucleic acids. Chem. Rev. 115, 12491–12545 (2015).

  • 73.

    Kim, Y., Sohn, D. & Tan, W. Molecular beacons in biomedical detection and clinical diagnosis. Int. J. Clin. Exp. Pathol. 1, 105 (2008).

    • CAS
    • Google Scholar
  • 74.

    Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (80-.). 360, 436–439 (2018).

  • 75.

    Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (80-.). 360, 439–444 (2018).

  • 76.

    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).

  • 77.

    Nickson, R. et al. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338 (1998).

  • 78.

    Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S. & Thomas, D. J. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123, 305–332 (2011).

  • 79.

    Kaur, H., Kumar, R., Babu, J. N. & Mittal, S. Advances in arsenic biosensor development–a comprehensive review. Biosens. Bioelectron. 63, 533–545 (2015).

  • 80.

    Brindha, K. & Elango, L. Fluoride in groundwater: causes, implications and mitigation measures. Fluoride Prop. Appl. Environ. Manag. 1, 111–136 (2011).

    • Google Scholar
  • 81.

    Hanna Instruments. Fluoride Portable Meter. Available at: https://www.hannainst.com/fluoride-portable-meter-hi98402.html.

  • 82.

    Didovyk, A., Tonooka, T., Tsimring, L. & Hasty, J. Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synth. Biol. 6, 2198–2208 (2017).

  • 83.

    McNerney, M. P. et al. Point-of-care biomarker quantification enabled by sample-specific calibration. Sci. Adv. 5, eaax4473 (2019).

    • Article
    • Google Scholar
  • 84.

    Hua, A., Gueuné, H., Cregut, M., Thouand, G. & Durand, M. -J. Development of a bacterial bioassay for atrazine and cyanuric acid detection. Front. Microbiol. 6, 211 (2015).

    • Article
    • Google Scholar
  • 85.

    Silverman, A. D., Akova, U., Alam, K. K., Jewett, M. C. & Lucks, J. B. Design and optimization of a cell-free atrazine biosensor. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.9b00388 (2020).

  • 86.

    Karig, D. K., Iyer, S., Simpson, M. L. & Doktycz, M. J. Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Res. 40, 3763–3774 (2011).

  • 87.

    Jepson, W. E., Wutich, A., Colllins, S. M., Boateng, G. O. & Young, S. L. Progress in household water insecurity metrics: a cross‐disciplinary approach. Wiley Interdiscip. Rev. Water 4, e1214 (2017).

    • Article
    • Google Scholar
  • 88.

    Young, S. L. et al. The Household Water InSecurity Experiences (HWISE) Scale: development and validation of a household water insecurity measure for low-income and middle-income countries. BMJ Glob. Heal. 4, e001750 (2019).

    • Article
    • Google Scholar
  • 89.

    Wutich, A. et al. Advancing methods for research on household water insecurity: studying entitlements and capabilities, socio-cultural dynamics, and political processes, institutions and governance. Water Secur. 2, 1–10 (2017).

    • Article
    • Google Scholar
  • 90.

    Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).

  • 91.

    Huang, P. -S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320 (2016).

  • 92.

    Lee, Y. J. & Moon, T. S. Design rules of synthetic non-coding RNAs in bacteria. Methods 143, 58–69 (2018).

  • 93.

    Nandagopal, N. & Elowitz, M. B. Synthetic biology: integrated gene circuits. Science (80-.). 333, 1244–1248 (2011).

  • 94.

    Alberts, B. et al. Molecular Biology of the Cell 6th edn. (Garland Science, 2015).


  • Source: Resources - nature.com

    Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects

    Explained: Cement vs. concrete — their differences, and opportunities for sustainability